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Preface

OpenFOAMR© libraries are a great contribution to CFD community and a powerful way to
create solvers and other tools. Nevertheless in this creative process a deep knowledge is needed
respect of classes structure, both for value storage in geometric fields and for matrices resulting
from equation systems, becoming a big challenge for debugging.
gdbOF is a new tool, attachable to gdb (GNU Debugger) which allows to analyze class struc-
tures in debugging time. This application is implemented by gdb macros, these macros can
access to code classes and its data transparently, giving so, the requested information. This
manual presents the key concepts of this tool and different application cases, such as assem-
bling and storage of matrices in a scalar advective-diffusive problem, non orthogonal correction
methods in purely diffusive tests and multiphase solvers based on Volume of Fluid Method.
In these tests several type of data are inspected, like internal and boundary vector and scalar
values from solution fields, fluxes in cell faces, boundary patches and boundary conditions. As
additional features data dumping to file and graphical viewing is presented.
All these capabilities give to gdbOF a wide range of use not only in academic tests but also in
real problems.
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Chapter 1

Requirements and Installation

To install gdbOF you must have already installed OpenFOAMR©1 and compiled it in Debug
mode. In $WM PROJECT DIR/etc/bashrc the environment variable $WM COMPILE OPTION can
be set to Debug. That is what you need to do if you want to compile using the debug flag, or
use the Debug version.

In order to leave this flag set as a default please add the following line in your $HOME\.bashrc
file.

. $WM_PROJECT_DIR/etc/bashrc

Once you open a terminal again you can check that you are using the Debug mode by
typing:

which icoFoam

which should point to a path containing the linuxGccDPDebug string.

Now you can compile or run the whole distribution or parts of OpenFOAMR© in Debug
mode. Note that you may consider not compiling ThirdPartyProducts in Debug mode, and
simply make sure that the Opt version of those are used also for the Debug mode2.

So, if you have already created your user folder ($mkdir -p $FOAM RUN), you only need to
decompress the downloaded tar.gz, put it into the folder and execute the installer:

$ sh installgdbOF.sh

If it was succesfull, the message End Installation.. will be presented and gdbOF will be
ready to use.

1gdbOF also depends on python 2.6 and gawk
2Hakan Nilsson, Chalmers/Applied Mechanics/Fluid Dynamics
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Chapter 2

Basic debugging

One of the most common tasks in the debugging process is to look at the values stored in an
array, that is possible in gdb with the command of Example 1, where v is the array to analyze.

Example 1 View array.

$(gdb) p *v@v_size

When analyzing class attributes is required, it is necessary to know the class inheritance
tree. It allows to interpret classes that contains other classes as attributes. To get the desired
information it is necessary to navigate through the pointers to find an specific attribute. A
typical example is to verify in debugging time that a certain boundary condition is being
satisfied (typically when the boundary condition is coded directly in the solver and the next field
information is obtained after solving the first time-step). Boundary conditions in OpenFOAMR©

are given for each patch in a GeometricField, then, assuming that the inspected patch is indexed
as 0 (the attribute BoundaryField has information of all the patches), to observe the values on
this patch sentence presented in Example 2 is needed, where vSF is a volScalarField.

Example 2 View Boundary Field values.

$(gdb) p *(vSF.boundaryField_.ptrs_.v_[0].v_)

@(vSF.boundaryField_.ptrs_.v_[0].size_)

Note that the statement in Example 2 doesn’t include any call to inline functions, which
could generate some problems in gdb1, giving even more complex access to information.

gdbOF solves the inconvenience of knowing the attribute’s place and using long statements.
Using gdbOF commands, as it is shown in Example 3, the same results are obtained. Note the
simplification of the statement, this is the gdbOF spirit, reducing the work needed to debug
and perform the same tasks more simply and transparently.

An extra feature allows to define print limits. Choosing starting and ending indexes, only
the desired value range is printed. The gdbOF command is called ppatchvalueslimits (there is

1Inlining is an optimization which inserts a copy of the function body directly in each calling, instead of
jumping to a shared routine. gdb displays inlined functions just like non-inlined functions. To support inlined
functions in gdb, the compiler must record information about inlining into debug information. gcc uses the dwarf
2 format to achieve this goal like several other compilers. On the other hand gdb only supports inlined functions
by means of dwarf 2. Versions of gcc before 4.1 do not emit two of the required attributes (DW AT call file and
DW AT call line) so that gdb does not display inlined function calls with earlier versions of gcc. [14]
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Example 3 View Boundary Field values with gdbOF.

$(gdb) ppatchvalues vSF 0

a similar command called pinternalvalueslimits). In Pseudo-code 1 the scheme of command
implementation is presented.

Pseudo-code 1 Structure of gdbOF Commands ppatchesvalueslimits and
pinternalvalueslimits.

1. Get parameters: field name, limits and patchindex (only in patchvalueslimits)

2. Corroborate limits to print

3. Detect field type (Vol-Surface and scalar-vector-tensor)

4. Print the field values in its respective format

There are many examples in OpenFOAMR© like the previous one in which the necessity
of a tool that simplifies access to the intricate class diagram can be pondered. Note that in
the last example it wasn’t mentioned how the index of the desired patch is known. Usually
OpenFOAMR© user knows only the string that represents the patch, but not the index by which
is ordered in the list of patches. Here gdbOF simplifies the task again, providing a command
that displays the list of patches with the respective index. The used command is presented in
Example 4.

Example 4 View patches list with gdbOF.

$(gdb) ppatchlist

Another important thing to take into account at debugging time is the scope of validity
of variables or object instances. To watch the values in a field or system of equations, it is
necessary to generate a gdb break statement in a line belonging to the scope of the analyzed
variable. This requires a previous code analysis prior to debugging or, at least, to recognize
the object whose variables are being tested. Here OpenFOAMR© introduces a further degree
of complexity, and it is the inclusion of macro C++ functions in the code, within which gdb
cannot insert breaks. So, to watch at the variables defined in this scope, it requires successive
jumps in the code using the commands step, next and finish.

Here, it was only the presentation of the problem and how the tool simplifies the debugging
work. For a more complete reference about other gdbOF macros, gdbOF documentation is a
valuable reference.



Chapter 3

Advanced Debugging

3.1 System matrix

Increasing the complexity of debugging, it can be found cases in which not only looking for an
attribute and dereference it is the solution of the problem. A typical case is the presentation
of the system, Ax = b, generated by the discretization of the set of differential equations that
are being solved and stored using LDUAddressing technique (see Appendix A). This technique
takes advantage of the sparse matrix format and stores the coefficients in an unusual way. This
storing format and the necessity of accessing and dereferencing the values forces to trace the
values one by one and, at every step, assemble the matrix in the desired format. There are two
commands to do this task, one for full matrices and other for sparse matrices.

In order to implement the necessary loops over the matrix elements, gdb provides a C-like
syntax to implement iterative (while, do-while) and control structures (if, else). These com-
mands have a very low performance, so the iteration over large blocks of data must be done
externally. gdbOF becomes independent of gdb for the assembly of matrix using another plat-
form: the lduAddressing vectors are exported to auxiliary files, and through calls to the shell
the calculation is performed in another language. In gdbOF, python is chosen due to its ability
to run scripts from console and having a simple file management, both to load and to save data.

It should be stressed that gdbOF macros for arrays have more complex options including not
only to see the complete matrix (M ×N), but a submatrix determined by a starting [row, col]
pair and another finishing [row, col] pair. Respect to the code, it doesn’t requires more than
taking care in defining the limits of the loop that reorder the matrix. Next a diagram that
explains how the command pfvmatrixfull works (with or without limits) is presented in the
Pseudo-code 2 and the diagram for the command pfvmatrixsparse (with o without limits) is
presented in the Pseudo-code 3.

3.2 Mesh Search

Another group of macros are those that search in the mesh. The aforementioned inability of
gdb to perform loops on large blocks of data extents to the case of meshes, forcing thus to
do searching using external tools. Taking advantage that OpenFOAMR© contains a battery of
methods to accomplish these tasks, gdbOF chooses to create stand-alone applications to which
call in debugging time to do the job. Even though this way means creating a new instance
of the mesh in memory, the cost in time and development is lower than would be required to
conduct the search in the mesh in gdb, implementing the loops in the gdb C-like syntax, or

11
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Pseudo-code 2 Structure of gdbOF Command pfvmatrixfull.

1. Get paramaters

2. Get upper and lower arrays with gdb

3. Redirect data to aux file

4. Format auxiliary files: gdb format → python format

5. Call python script to assemble the matrix

(a) Read auxiliary files

(b) Set limits

(c) Do lduAddressing (See appendix A)

(d) Complete with zeros

6. Format auxiliary files: python format → gdb format

7. Show in output and save file in octave format

Pseudo-code 3 Structure of gdbOF Command pfvmatrixsparse.

1. Get parameters

2. Get upper and lower arrays with gdb

3. Redirect data to aux file

4. Format aux files: gdb format → python format

5. Call python script to assemble the matrix

(a) Read aux files

(b) Do lduAddressing for sparse matrix

(c) Generate sparse file header

6. Format aux files: python format → gdb format

7. Show in output or/and save file in octave format adding the header to the body

in another language such as python. These OpenFOAMR© applications are included in gdbOF
package and are compiled when the gdbOF installer is run.

Cases of search in mesh typically covered by gdbOF are those which start with a point
defined by [x, y, z], returning a cell index or values in some field, either in the center of cell
(volFields) or in each of its faces (surfaceFields).

Regarding to obtain the value of a field at some point there is no more inconvenient that
finding the index of the cell or index of the cell containing the point, whose centroid is nearest
of it. To do this, gdbOF uses a call to one of the applications that are compiled at installation
time, but the user only needs to call the a simple command as is shown in Example 5, where
x, y, and z are the parameters passed by the user in the command call representing the (x,
y, z) coordinates of the point. That command returns two indexes: the index of the cell that
contains the point, and the index of the cell which has the nearest centroid. Afterward, the
user put one of these indexes in the command pinternalvalueslimits to extract the field value in
the cell centroid, or to observe the equation assembled for that cell with the command pfvmatrix.

A Pseudo-code of this tool is presented in Pseudo-code 4, note that it doesn’t exists any
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Example 5 View cell index.

$(gdb) pfindCell x y z

communication between gdb and other platforms more that the shell call. The return of the
results is through temporal files, which must be generated in a particular format to be readable
by gdbOF. This technique is used because it is not possible to access to values in memory from
one process to another process.

Pseudo-code 4 Structure of gdbOF Command pfindcell.

1. Get parameters

2. Call FOAM app. to make the search

(a) Start new case

(b) Do search (how is explained in Appendix C)

(c) Save results in a temporal file

3. Read temporal file using a shell script

4. Show the indexes by standard output

Another kind of searching through the mesh is to find a list of indices of faces belonging
to a cell, this task operates in similar way. The user invokes a gdbOF command and this
uses a backend application. Nevertheless the simplicity of using the commands, the code is
more intricate because the storage of faces in a cell is not correlated, and the faces are sub-
divided in internal or boundary faces (this requires walking through the list of faces in the
mesh). It is also needed to identify whether these faces are in the internalField or in one of
the patches in the boundaryField: the last option requires seeking what is the patch which the
cell is belonging to and what is the local index of the face within the patch. With this infor-
mation is possible to obtain the field’s value in that face. For more information see appendix C.

The gdbOF command psurfacevalues performs this search: given a cell, find the indices of
the faces that make up it and the value of the chosen field in each of these faces. See Example
6.

Example 6 View surface values

$(gdb) psurfacevalues surfaceField cellIndex

In pfindcell, the result stored on disk application was only necessary to parse and display it
on console, but in this case, the indexes that returns the application should be used to access to
an array containing the values of the field. To do that, this implementation requires to generate
a temporal gdb macro (using a shell script) because it is not possible in gdb to assign the re-
sult of extracted data from a file to a variable. The Pseudo-code 5 presents this implementation.

Note that the temporal gdb macro is generated on the fly and is only functional for the
parameters generated in the temporal code of the macro (Field name and location of the desired
value), then the loop in all faces of the cell is transparent to the user and it is not a problem
for debugging.
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Pseudo-code 5 Structure of gdbOF Command psurfacevalues.

1. Get parameters and check if it is a surfaceField

2. Call FOAM app. to make the search

(a) Start new case

(b) Do search (how is explained in appendix C)

(c) Save results in a temporal file

3. Read temporal file using a shell script

4. Through each index:

(a) Generate temporal macro

(b) Call macro (this macro prints the results)

3.3 Graphical debugging

Having in mind the aim of these tools is debugging of field manipulation software, the capstone
tool is finally presented. It consists in the spatial visualization of such fields in graphical form.

This is a widely spread concept which reminds us the first efforts in graphical debugging
[5]. An usual application of graphical debugging are general data structures [15, 8], and par-
ticularly linked-lists [12] and graphs [11]. Data Display Debugger [16, 4] can be cited as an
useful and general tool for these purposes. Respect of field manipulation software debugging, it
requires mesh manipulation and more sophisticated data analisis tools which drives to specific
implementations [6, 1].

In the gdbOF particular case, this objective summarizes previously presented tools, and it
is particularly tailored for volField debugging. Basically it consists in an OpenFOAMR© format
data dump tool callable from any debugging point with optional .vtk file format exporting (via
foamToVtk tool) and ParaviewR© [13] on the fly running. Steps to achieve this goal are presented
in Pseudo-code 6

Pseudo-code 6 Structure of gdbOF Command pexportfoamformat.

1. Get parameters and check if it is a volField

2. OS environment setting (first run)

(a) Creation of data dump directories

(b) Symbolic linkage of constant/ and system/ to avoid data duplication

3. Get actual time-step and last data written name

4. Write OpenFOAMR© file format header and set field dimensions

5. Write internalField

6. Identification of boundary patches via ppatchlist calling.

7. For each patch, write boundaries’ surfaceFields.

8. Close file.

9. Call optional parameters (.vtk exporting and ParaviewR© running)



Chapter 4

Tests

4.1 Scalar Transport Test

The first study case consists in the unsteady advective-diffusive equation, in a bi-dimensional
mesh with 3 × 3 cells, which is shown in Figure 4.1.

4 TESTS

4.1 Scalar Transport Test

The first study case consists of the unsteady advective-diffusive equation, in a bidimensional
mesh with 3 × 3 cells, which is shown in Figure ??.

0 1 2

3 4 5

6 7 8

insulated2

fixed2

insulated1

fixed1

Figure 1: Geometry and patches in scalar transport test (numbers idenfies cells

Partial differential equation is presented in Equation (??).

∂ρφ

∂t
+ ∇ · (ρUφ) − ∇ · (ρΓφ∇φ) = Sφ(φ) (1)

with the boundary conditions shown in Equations (??), (??) and (??).

∇φ · n|insulated = 0 (2)

φfixed1 = 373[K] (3)

φfixed2 = 273[K] (4)

To solve this problem, the following parameters are selected: U = [1, 0][m
s
], Δt = 0.005[s],

ρ = 1[ kg
m3 ], Γφ = 0.4[m

2

s
], Sφ(φ) = 0 and φ0 = 273[K] ∀ Ω as initial solution.

In the Finite Volume Method, each cell is discretized as is shown in equation (??). (?)

φn
p − φ0

p

Δt
Vp +

�

f

Fφn
f −

�

f

ΓφSf (∇φ)n
f = 0 (5)

It is known that the assembly of a problem that includes convection using the upwind method,
results in a non-symmetric matrix, in addition, increasing the diffusive term and decreasing the
time step, this matrix will tend to be diagonal dominant.

Assembling the equation (??) in each cell for the initial time (t = 0.005), the system of
equations presented in (??) is obtained.

Figure 4.1: Geometry and patches in scalar transport test (numbers identify cells)

Partial differential equation is presented in Equation (4.1).

∂ρφ

∂t
+∇ · (ρUφ)−∇ · (ρΓφ∇φ) = Sφ(φ) (4.1)

with the boundary conditions shown in Equations (4.2), (4.3) and (4.4).

∇φ · n|insulated = 0 (4.2)

φfixed1 = 373[K] (4.3)

φfixed2 = 273[K] (4.4)
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To solve this problem, the following parameters are selected: U = [1, 0][m
s
], ∆t = 0.005[s],

ρ = 1[ kg
m3 ], Γφ = 0.4[m2

s
], Sφ(φ) = 0 and φ0 = 273[K] ∀ Ω as initial solution.

In the Finite Volume Method, each cell is discretized as is shown in equation (4.5). [7]

φnp − φ0
p

∆t
Vp +

∑
f

Fφnf −
∑
f

ΓφSf (∇φ)nf = 0 (4.5)

It is known that the assembly of a problem that includes convection using the upwind
method, results in a non-symmetric matrix, in addition, increasing the diffusive term and de-
creasing the time step, this matrix will tend to be diagonal dominant.

Assembling the equation (4.5) in each cell for the initial time (t = 0.005), the system of
equations presented in (4.6) is obtained.

202.6φ0 − 0.4φ1 − 0.4φ3 = 55271.4

−1.4φ0 + 202.2φ1 − 0.4φ4 = 54600

−1.4φ1 + 201.6φ2 − 0.4φ5 = 54545.4

−0.4φ0 + 203φ3 − 0.4φ4 − 0.4φ6 = 55271.4

−0.4φ1 − 1.4φ3 + 202.6φ4 − 0.4φ5 − 0.4φ7 = 54600 (4.6)

−0.4φ2 − 0.14φ4 + 202φ5 − 0.4φ8 = 54545.4

−0.4φ3 + 202.6φ6 − 0.4φ7 = 55271.4

−0.4φ4 − 1.4φ6 + 202.2φ7 − 0.4φ8 = 54600

−0.04φ5 − 1.4φ7 + 201.6φ8 = 54545.4

OpenFOAMR© Assembly

The above system, which was assembled manually, can be compared with the system obtained
by running the OpenFOAMR© solver scalarTransportFoam. First of all a directory is generated
with the case described and solver is run in debug mode ($ gdb scalarTransportFoam). Then, a
break is set in a line of some class that is within the scope of the object fvScalarMatrix contain-
ing the system of equations as is mentioned in the section 2.

Establishing a break in line 144 of the file fvScalarMatrix.C, and calling the gdbOF pfvmatrixfull

command, the matrix A of the system is printed on the console. This coincides with the man-
ually generated system, showing the the right performance of the tool.

An additional feature of this and other commands, is the ability to export data to a file
format compatible with the calculation software Octave and MatlabR©. To do this only one more
parameter is needed in the command invocation, indicating the file name. gdbOF is responsible
for export in the correct format, which can be not only rows and columns of values, but also, in
[row,col,coeff] format. pfvmatrixsparse exports the matrix of the system in this format which
has a header that identifies the file as sparse matrix. This method greatly reduces the size
needed to store the matrices in the case of medium or large meshes.

Expanding the explanation of the last section, here it is shown the use of patch commands.
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Example 7 View system matrix with gdbOF

$(gdb) b fvScalarMatrix.C:144

$(gdb) run

$(gdb) pfvmatrixfull this fileName.txt

$(gdb) shell cat fileName.txt

202.60 -0.40 0.00 -0.40 ...

-1.40 202.20 -0.40 0.00 ...

0.00 -1.40 201.60 0.00 ...

-0.40 0.00 0.00 203.00 ...

... ... ... ... ...

(gdb) p *totalSource.v_@9

{55271.4, 54600, 54545.4, 55271.4 ...

Suppose that is wanted to verify if the condition φ = 3731 in the patch called fixed1 is correctly
set. First, it is necessary to know the index of this patch, as it is shown in Example 8.

Example 8 View patches list with gdbOF

(gdb) ppatchlist T

PatchName --> Index to Use

FIXED1 --> 0

FIXED2 --> 1

INSULATED2 --> 2

INSULATED1 --> 3

FRONT_AND_BACK --> 4

Knowing the patch index, it is possible to see its values, how it is shown in Example 9.
There is an array with three values corresponding to the boundary condition on each of the
three faces that make up this patch.

Example 9 View patch values with gdbOF

(gdb) ppatchvalues T 0

(gdb) $1 = {373,373,373}

Appendix B shows how the internal and boundary values (in volFields and in surfaceFields)
are stored in OpenFOAMR©.

4.2 Laplacian Test

In this problem, gdbOF is used to observe the fields values and the resulting equations system,
in order to infer the correction method for non-orthogonality of the mesh used in OpenFOAMR©

(Jasak presents in his thesis [7] three methods to determine the non-orthogonal contribution
in diffusion term discretization: minimum correction, orthogonal correction and over-relaxed
correction2).

1In the case, T is used to represent the scalarField in instead of φ , because OpenFOAMR© uses φ for a
surfaceScalarField that represents the flux thought each face (φ = Sf · Uf )

2The diffusive term in a non-orthogonal mesh is discretized in the following way: Sf · (∇φ)f = ∆f · (∇φ)f +
kf · (∇φ)f , where Sf = ∆f + kf . The correction methods propose different ways to find ∆f .
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The problem to solve is defined in the Equation (4.7), with the boundary conditions shown
in (4.8), (4.9) and (4.10), and the non-orthogonal mesh presented in Figure 4.2.

∇ · (ρΓφ∇φ) = 0 (4.7)

∇φ · n|insulated = 0 (4.8)

φfixed1 = 273[K] (4.9)

φfixed2 = φright[K] (4.10)

0

1

fixed1

insulated1

fixed2

insulated2

Figure 2: Geometry and patches in Laplacian test (numbers identifies cells).

Constants and initial conditions are: ρ = 1, Γφ = 1 and φ0 = 0[K] ∀ Ω.

Example ?? allows to verify the proper initialization of the internal field. The list shown
presents the values of the field.

Example 10 View internalField values with gdbOF

(gdb) pinternalvalues T
(gdb) $1 = {0,0}

It can be shown analytically that the solution to this problem is a linear function φ(x) =
ax + b, and if φfixed2 = φfixed1 ⇒ a = 0 and the solution is constant, doing unnecessary the
second term in non-orthogonal correction ( kf · (∇φ)f = 0), but allows to compare the systems
generated by the different approaches in comparison with the generated in OpenFOAM R�, and
to determine which one is the used method.

Using minimum-correction approach (Δf = d·S
|d|

d):

−3.29φ0 + 1.79φ1 = −409.5

1.79φ0 + −3.29φ1 = −409.5

Using orthogonal-correction approach (Δf = d
|d|
|S|):

−4.5φ0 + 3φ1 = −409.5

3φ0 + −4.5φ1 = −409.5

Using over-relaxed approach (Δf = d
d·S
|S|2):

−5.25φ0 + 3.75φ1 = −409.5

3.75φ0 + −5.25φ1 = −409.5

Example ?? shows how gdbOF extracts the equations system was shown. Here, the reader
can verify that the over-relaxed approach is implemented in OpenFOAM R�.

Figure 4.2: Geometry and patches in Laplacian test (numbers identifies cells).

Constants and initial conditions are: ρ = 1, Γφ = 1 and φ0 = 0[K] ∀ Ω.

Example 10 allows to verify the proper initialization of the internal field. The list shown
presents the values of the field.

Example 10 View internalField values with gdbOF

(gdb) pinternalvalues T

(gdb) $1 = {0,0}

It can be shown analytically that the solution to this problem is a linear function φ(x) =
ax + b, and if φfixed2 = φfixed1 ⇒ a = 0 and the solution is constant, doing unnecessary the
second term in non-orthogonal correction ( kf · (∇φ)f = 0), but allows to compare the systems
generated by the different approaches in comparison with the generated in OpenFOAMR©, and
to determine which one is the used method.

Using minimum-correction approach (∆f = d·S
|d| d):

−3.29φ0 + 1.79φ1 = −409.5

1.79φ0 +−3.29φ1 = −409.5

Using orthogonal-correction approach (∆f = d
|d| |S|):

−4.5φ0 + 3φ1 = −409.5

3φ0 +−4.5φ1 = −409.5
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Using over-relaxed approach (∆f = d
d·S |S|

2):

−5.25φ0 + 3.75φ1 = −409.5

3.75φ0 +−5.25φ1 = −409.5

Example 11 shows how gdbOF extracts the equation system. Here, the reader can verify
that the over-relaxed approach is implemented in OpenFOAMR©.

Example 11 Equation System debugging in LaplacianTest

$(gdb) b fvScalarMatrix.C:144

Breakpoint 1 at 0xb71455dc: file fvMatrices/fvScalarMatrix... line 144

$(gdb) run

...

$(gdb) pfvmatrixfull this this.txt

Saved correctly!

$(gdb) shell cat this.txt

-5.25 3.75

3.75 -5.25

(gdb) p *totalSource.v_@2

{-409.5, -409.5}

4.3 Multiphase Test

As the last example, a multiphase solver, namely interFoam is used showing gdbOF function-
ality. In this case a 2D reference problem is solved, which has analytical solution. Let be a
rectangular domain with a Couette velocity profile (see Figure 4.3), and filled with a light fluid
as initial condition and a domain inlet with a heavy fluid in all extension. The problem to solve
is the evolution of the heavy phase through the domain along the time.

Example 11 Equation System debugging in LaplacianTest

$(gdb) b fvScalarMatrix.C:144
Breakpoint 1 at 0xb71455dc: file fvMatrices/fvScalarMatrix... line 144
$(gdb) run
...
$(gdb) pfvmatrixfull this this.txt
Saved correctly!
$(gdb) shell cat this.txt

-5.25 3.75
3.75 -5.25

(gdb) p *totalSource.v_@2
{-409.5, -409.5}

4.3 Multiphase Test

As the last example, a multiphase solver, namely interFoam is used showing gdbOF func-
tionality. In this case a 2D reference problem is solved, which has analytical solution. Let be a
rectangular domain with a Couette velocity profile (see Figure ??), and filled with a light fluid
as initial condition and a domain inlet with a heavy fluid in all extension. The problem to solve
is the evolution of the heavy phase thought the domain along the time.
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Interface

V = 1 (Moving wall)

V = 0 (Stationary wall)
∂α
∂n = 0

∂α
∂n = 0

α = 1

Inlet
∂α
∂n = 0

L = 10

h = 1

x

y

Heavier phase α = 1

Less dense phase α = 0

Figure 3: Geometry in interFoam test

This two phase system is solved by means of a momentum equation (See Equation ??) and
an advection equation for the void fraction function α (See Equation ??) (?)

∂ρU

∂t
+ ∇• (ρUU) −∇• (µ∇U) − (∇U) •∇α = −∇pd − g•x∇ρ + σκ∇α (11)

∂α

∂t
+ ∇• (Uα) + ∇• [Urα (1 − α)] = 0 (12)

In this case, g = 0, ρ = 1 and it can be shown that ∇pd and κ = 0 (no pressure gradient
is needed in a velocity driven flow and curvature vanishes due a linear interface). Taking this
in account, initial linear velocity profile is an spatial solution of Equation ?? so it reduces to
Equation ??.

∂U

∂t
= 0 (13)

Figure 4.3: Geometry in interFoam test

This two phase system is solved by means of a momentum equation (See Equation 4.11)
and an advection equation for the void fraction function α (See Equation 4.12) [2]
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∂ρU

∂t
+∇• (ρUU)−∇• (µ∇U)− (∇U) •∇α = −∇pd − g•x∇ρ+ σκ∇α (4.11)

∂α

∂t
+∇• (Uα) +∇• [Urα (1− α)] = 0 (4.12)

In this case, g = 0 and it can be shown that ∇pd and κ = 0 (no pressure gradient is needed
in a velocity driven flow and curvature vanishes due a linear interface). Taking this in account,
initial linear velocity profile is an spatial solution of Equation 4.11 so it reduces to Equation
4.13.

∂U

∂t
= 0 (4.13)

From this conclusion it is clear that streamlines are horizontal, and the heavier phase ad-
vances more quickly as streamlines are closer to the top, giving a linear interface front (See
Figure 4.3). This advancement is governed by an advective equation for the indicator function
which includes an extra term, suitable to compress the interface [9].

Using Finite Volume Method Equation 4.12 can be discretized as in Equation 4.14 [3]

αn+1 − αn

∆t
V +

∑
f

[
αnf φ

n
f + αnf

(
1− αnf

)
φr

n
f

]
= 0 (4.14)

where φnf = Un · Sf , φrnf = Un
r · Sf and superindex n implies the time-step. Ur is the

compressive velocity and is calculated directly as a flux: φrf = nf min

[
Cα

|φ|
|Sf | ,max

(
|φ|
|Sf |

)]
.

Cα is an adjustment constant and nf =
(∇α)f

|(∇α)f+δn| •Sf is the face unit normal flux with δn as

a stabilization factor [2]. φrf values are variable only vertically in this example and will be
checked at debugging time against those can be calculated from theory, using gdbOF tools. In
this case, due how advective terms are calculated there is necessary to show values at faces.

Domain was meshed as a 3D geometry due to OpenFOAMR© requirements [10] with a
100×10×1 elements grid, so each hexahedron has edges of 0.1 units in size. Since its definition
and taking Cα = 1, |Ur| = |U|, therefore φrf = Ur · Sf = 0.01 |Ur|

(
Ǔr · Šf

)
. So taking three

distances from bottom edge of the domain, y = 0.05, y = 0.45 and y = 0.95, values for φ in
faces with Sf aligned with x direction must be |φrf | = 0.005, |φrf | = 0.045 and |φrf | = 0.095
respectively.

As the first stage, it is necessary to find the indices of three cells with such a y coordinates,
taking for example x = 0.05, and using pFindCell tool results shown in Example 12 can be
obtained.

Example 12 View cell index in multiphase problem.

(gdb) pfindcell 0.05 0.45 0.05

RESULTS:

Nearest cell centroid cell number: 400

Containing point cell number (-1=out) : 400
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As it was explained in Subsection 3.2 the only index of the cell is not enough to address the
values in the internalField of a given field. Each cell has as many surface values as faces in the
cell, therefore is necessary to show all these values, and each face has an addressing index not
necessarily correlative.

psurfacevalues gdbOF command simplifies this task. Knowing the index of the cell to an-
alyze, it returns the information on each face about the field indicated in the command line
parameters: boundary face or internal face (categorized according to whether it has a neighbour
or not) and field value. If it is working with a 2D mesh, information is also returned as in a 3D
mesh (6 faces for a hexahedron), but it indicates on which of these the condition is empty.

To perform this task, different methods of some of the classes in charge of managing
OpenFOAMR© mesh are called by means of various OpenFOAMR© applications (included in
gdbOF package) running on the backend and returning the results (index of cells, or faces) at
gdbOF macros. Then these are responsible for finding the value of the field in debugging time
(see Appendix C or the Subsection 3.2).

So that, applying this command to the previous found cell it is possible to show φ in all
faces of that cell (See Example 13)

Example 13 Example of usage of psurfacevalues for face defined field.

(gdb) psurfacevalues phir 400

internal Face:

$5 = 0

internal Face:

$6 = -0.0045

internal Face:

$7 = 0

empty Face

empty Face

boundary Face:

$8 = 0.0045

Results are consistent with original problem. Two faces are marked as empty because the
mesh has only one cell in depth. This boundary condition is used by OpenFOAMR© to represent
no variability in direction perpendicular to the face, allowing a 2D calculation. Faces 5 and 7
corresponds to top and bottom faces of the cell where flux is null. Finally, faces 6 and 8 have
face normals aligned with the velocity and flux values are that were predicted theoretically for
y = 0.45. Values have different sign due to the faces have opposite normals direction.

Regarding graphical debugging presented in Section 3.3 pexportfoamformat is a useful tool
to inspect the α field as in Figure 4.3. To do so, command is invoked as in Example 14 and
results are shown in Figure 4.4.
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Example 14 Field exporting to .vtk by means of pexportfoamformat. ParaviewR© is invoked as
well
(gdb) pexportformat alpha1 VTK Paraview

Including internal field...

Saved correctly!

Including fixedWall boundary field...

Empty Condition, no values

Including movingWall boundary field...

Saved correctly!

Including inlet boundary field...

Saved correctly!

Including outlet boundary field...

Saved correctly!

Including frontAndBackPlanes boundary field...

Saved correctly!

Exporting to VTK...

Launching Paraview...

Figure 4.4: α field representation in ParaviewR© using pexportfoamformat
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ology for debugging scientific applications. Communications of the ACM, 39(11):69–77,
1996.

[2] E. Berberovic, N.P. Van Hinsberg, S. Jakirlic, I.V. Roisman, and C. Tropea. Drop impact
onto a liquid layer of finite thickness: Dynamics of the cavity evolution. Physical Review
E, 79, 2009.

[3] P. Bohorquez R. de M. Study and Numerical Simulation of Sediment Transport in Free-
Surface Flow. PhD thesis, Málaga University, Málaga, 2008.

[4] D. Cruz, P. Henriques, and M.J. Pereira. Alma versus ddd. 2008.

[5] A.D. Dewar and J.G. Cleary. Graphical display of complex information within a prolog
debugger. International Journal of Man-Machine Studies, 25(5):503–521, 1986.

[6] V. Grimm. Visual debugging: A way of analyzing, understanding and communicating
bottom-up simulation models in ecology. Natural Resource Modeling, 15(1):23–38, 2002.

[7] H. Jasak. Error analysis and estimation for the finite volume method with applications
to fluid flows. PhD thesis, Department of Mechanical Engineering Imperial College of
Science, Technology and Medicine, 1996.

[8] J.L. Korn and Princeton University. Dept. of Computer Science. Abstraction and visual-
ization in graphical debuggers. Princeton University Princeton, NJ, USA, 1999.

[9] OpenCFD. OpenCFD Technical report no. TR/HGW/02 (unpublished), 2005.

[10] OpenCFD. OpenFOAM, The Open Source CFD Toolbox, User Guide. OpenCFD Ltd.,
2009.

[11] G. Parker, G. Franck, and C. Ware. Visualization of large nested graphs in 3d: Navigation
and interaction. Journal of Visual Languages and Computing, 9(3):299–317, 1998.

[12] T. Shimomura and S. Isoda. Linked-list visualization for debugging. Software, IEEE,
8(3):44–51, 1991.

[13] A.H. Squillacote and J. Ahrens. The paraview guide. Kitware, 2006.

[14] R. Stallman, R. Pesch, and S. Shebs. Debugging with GDB: The GNU Source-Level de-
bugger. GNU Press, Free Software Foundation Inc., 9th edition, 2002.

[15] V. Waddle. Graph layout for displaying data structures. In Graph Drawing, pages 98–103.
Springer, 2001.

[16] A. Zeller and D. Lutkehaus. DDD A free graphical front-end for unix debuggers. ACM
Sigplan Notices, 31(1):22–27, 1996.

23



24 BIBLIOGRAPHY



Appendix A

Matrix Storage in OpenFOAMR©

The discretization of a set of differential equations, can be described in matrix form

Ax = b (A.1)

where A is a sparse block matrix, that can be inverted to solve the system. However OpenFOAMR©

do not use the typical sparse storage form, but uses another form of storage that is called LDU
Addressing. This technique consists in decompose the matrix coefficients in three arrays: one
for diagonal coefficients called diag, and the others two for the non-zero coefficients in lower and
upper triangulars, called lower and upper respectively. Also, exists other two arrays that indi-
cates the position in the matrix of each coefficient, they are called lowerAddr and upperAddr,
where lowerAddr[i] represents the smallest cell’s index (in the lower triangular will the row
index and in the upper triangular will the column index), meanwhile upperAddr[i] represents
the biggest index.

A pseudocode to assemble the full matrix is presented in Code 7.

Pseudo-code 7 Assembly with LDU Addressing.

for k : sizeDiag

A[k][k] = diag[k]

end for

for k : sizeAddr

i = lowerAddr[k]

j = upperAddr[k]

A[i][j] = upper[k]

A[j][i] = lower[k]

end for

It should be stressed that in case of a symmetric matrix, the upper and lower vectors are
identical, so that only one of them is stored. To access to the complementary vector, the original
one is referenced.

OpenFOAMR© Files References

• ∼/OpenFOAM/OpenFOAM-<version>/src/finiteVolume/fvMatrices/fvMatrix/fvMatrix.H

• ∼/OpenFOAM/OpenFOAM-<version>/src/finiteVolume/fvMatrices/fvMatrix/fvMatrix.C

• ∼/OpenFOAM/OpenFOAM-<version>/src/matrices/lduMatrix/lduAddressing/lduAddressing.H

• ∼/OpenFOAM/OpenFOAM-<version>/src/matrices/lduMatrix/lduAddressing/lduAddressing.C

25
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Appendix B

volFields and surfaceFields

volFields contain values in each cell centroid, this make up the internalField, and the index
in this array is equivalent to the cell index in the mesh. Each patch is represented with a
surfaceField, and all together make up the boundaryField.

Pseudo-code 8 Recovering Internal and Boundary values

l = myVolField.internalField.size_

i = 0

while(i<l)

intFieldValue = myVolField.internalField.v_[i]

//do something

i++

l = myVolField.boundaryField.ptrs_.size_

while(i<l)

patch = myVolField.boundaryField.ptrs_.v_[i]

l2 = patch.size_

j = 0

while(j<l2)

patchFieldValue = patch.v_[j]

//do something

j++

i++

It should be mentioned that the value of field can be scalar, vector or tensor, depending on
the specialization of volField (volScalarField, volVectorField or volTensorField).

The difference between volFields and surfaceFields, is that the first one stores in internalField

the field values at the centroids of each cell, while the second stores in the internalField the
field values at the internal faces (those which have owner and neighbour). Retrieving the values
is similar to that was previously presented (Pseudo-code 8), but require some manipulation of
the values to determine the correspondence cell faces, since the field values on each face for a
given cell are not contiguous in the array. (see Appendix C).

OpenFOAMR© Files References

• ∼/OpenFOAM/OpenFOAM-<version>/src/OpenFOAM/fields/GeometricFields/GeometricField.H

• ∼/OpenFOAM/OpenFOAM-<version>/src/OpenFOAM/fields/GeometricFields/GeometricField.C

• OpenFOAMR© Programmer’s Guide, chapter 2.3: Discretisation of the solution domain.

27
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Appendix C

Values in cell faces of surfaceFields

This appendix explains how the fields values in cells and in each face that make up the cell are
stored.

Given a point and using mesh search methods (implemented with octrees) provided OpenFOAMR©

it is possible to find the index of the cell whose centroid is closest to the point or in which this
point is contained.

This index is directly used in collecting the field value (in volFields) for that cell. An
example of this technique is presented in the Pseudo-code 9.

Pseudo-code 9 Recovering field value

cellIndex = mesh.searchCellIndex(point)

fieldValue = field.internalField.v_[cellIndex]

Nevertheless, in the case of values on the faces of the cell a disadvantage arises, it is that
there is no data structure to map cellIndex => facesIndex (where facesIndex is a vector
with faces indexes in a surfaceField) so that the search should be done through the faces list,
checking if the cell is the face’s owner or neighbour.

In the case of inner faces, the face index found is that allows to access the internal surfaceField
to extract the value of that field in the face. But in the case of boundary faces, a distinction
have to be done because belonging to a patch implies a local index of the face within the patch.
OpenFOAMR© includes methods that simplifies the search of the local index to the simply call-
ing of a function.

A pseudocode for the case of surfaceField is presented in the Pseudo-code 10.

OpenFOAMR© Files References

• ∼/OpenFOAM/OpenFOAM-<version>/src/meshTools/meshTools/meshTools.H

• ∼/OpenFOAM/OpenFOAM-<version>/src/meshTools/meshTools/meshTools.C

• OpenFOAMR© Programmer’s Guide, chapter 2.3: Discretisation of the solution domain.

29



30 APPENDIX C. VALUES IN CELL FACES OF SURFACEFIELDS

Pseudo-code 10 Recovering field faces values

cellIndex = mesh.searchCellIndex(point)

for f : nFaces

fieldFaceValue = false

if isInternalFace(f)

if owner[f]==cellIndex || neighbour[f]==cellIndex

fieldFaceValue = field.internalField[f]

else

if owner[f]==cellIndex

patchIndex = whichPatch(f)

f_local = whichFace(f,patchIndex)

fieldFaceValue = field.boundaryField[patchIndex][f_local]

if(fieldFaceValue)

//do something with fieldFaceValue

end for



Appendix D

gdbOF commands table

Command Description
ppatchlist Prints a list with patches’ names and IDs
pinternalvalues Prints the internal field values of geometric fields
pinternalvalueslimits Prints the internal field values of geometric fields in a specified

range
pfieldvalues Prints the values of simple fields
pfieldvalueslimits Prints the values of simple fields in a specified range
ppatchvalues Prints the field values on the selected patch
ppatchvalueslimits Prints the field values on the selected patch in a specified range
pfvmatrixfull Dumps a fvMatrix in Octave/MatlabR© format
pfvmatrixsparse Dumps a fvMatrix in Octave/MatlabR© sparse format
pfindcell Prints the nearest cell centroid index and the cell centroid index

that contains a given point
pfindface Prints the nearest patchID from a point, and the nearest faceID

in this patch
psurfacevalues Prints the field values on the faces of a given cell
pexportfoamformat Exports vol*Field in FOAM format. It allows converting it to

VTK and open with Paraview
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