Module demo
source code
demo.py -- Demonstrate the Gnuplot python module.
Run this demo by typing 'python demo.py'. For a more complete test of
the Gnuplot package, see test.py.
|
newaxis = None
|
|
ALLOW_THREADS = 1
|
|
BUFSIZE = 10000
|
|
CLIP = 0
|
|
ERR_CALL = 3
|
|
ERR_DEFAULT = 0
|
|
ERR_DEFAULT2 = 2084
|
|
ERR_IGNORE = 0
|
|
ERR_LOG = 5
|
|
ERR_PRINT = 4
|
|
ERR_RAISE = 2
|
|
ERR_WARN = 1
|
|
FLOATING_POINT_SUPPORT = 1
|
|
FPE_DIVIDEBYZERO = 1
|
|
FPE_INVALID = 8
|
|
FPE_OVERFLOW = 2
|
|
FPE_UNDERFLOW = 4
|
|
False_ = False
|
|
Inf = inf
|
|
Infinity = inf
|
|
MAXDIMS = 32
|
|
NAN = nan
|
|
NINF = -inf
|
|
NZERO = -0.0
|
|
NaN = nan
|
|
PINF = inf
|
|
PZERO = 0.0
|
|
RAISE = 2
|
|
SHIFT_DIVIDEBYZERO = 0
|
|
SHIFT_INVALID = 9
|
|
SHIFT_OVERFLOW = 3
|
|
SHIFT_UNDERFLOW = 6
|
|
ScalarType = ( <type 'int'>, <type 'float'>, <type 'complex'>, ...
|
|
True_ = True
|
|
UFUNC_BUFSIZE_DEFAULT = 10000
|
|
UFUNC_PYVALS_NAME = ' UFUNC_PYVALS '
|
|
WRAP = 1
|
|
absolute = <ufunc 'absolute'>
|
|
add = <ufunc 'add'>
|
|
arccos = <ufunc 'arccos'>
|
|
arccosh = <ufunc 'arccosh'>
|
|
arcsin = <ufunc 'arcsin'>
|
|
arcsinh = <ufunc 'arcsinh'>
|
|
arctan = <ufunc 'arctan'>
|
|
arctan2 = <ufunc 'arctan2'>
|
|
arctanh = <ufunc 'arctanh'>
|
|
bitwise_and = <ufunc 'bitwise_and'>
|
|
bitwise_not = <ufunc 'invert'>
|
|
bitwise_or = <ufunc 'bitwise_or'>
|
|
bitwise_xor = <ufunc 'bitwise_xor'>
|
|
c_ = <numpy.lib.index_tricks.c_class object at 0x2b0c49aabb90>
|
|
cast = {<type 'numpy.int64'>: <function <lambda> at 0x2b0c4916...
|
|
ceil = <ufunc 'ceil'>
|
|
conj = <ufunc 'conjugate'>
|
|
conjugate = <ufunc 'conjugate'>
|
|
cos = <ufunc 'cos'>
|
|
cosh = <ufunc 'cosh'>
|
|
divide = <ufunc 'divide'>
|
|
e = 2.71828182846
|
|
equal = <ufunc 'equal'>
|
|
exp = <ufunc 'exp'>
|
|
expm1 = <ufunc 'expm1'>
|
|
fabs = <ufunc 'fabs'>
|
|
floor = <ufunc 'floor'>
|
|
floor_divide = <ufunc 'floor_divide'>
|
|
fmod = <ufunc 'fmod'>
|
|
frexp = <ufunc 'frexp'>
|
|
greater = <ufunc 'greater'>
|
|
greater_equal = <ufunc 'greater_equal'>
|
|
hypot = <ufunc 'hypot'>
|
|
index_exp = <numpy.lib.index_tricks._index_expression_class ob...
|
|
inf = inf
|
|
infty = inf
|
|
invert = <ufunc 'invert'>
|
|
isfinite = <ufunc 'isfinite'>
|
|
isinf = <ufunc 'isinf'>
|
|
isnan = <ufunc 'isnan'>
|
|
ldexp = <ufunc 'ldexp'>
|
|
left_shift = <ufunc 'left_shift'>
|
|
less = <ufunc 'less'>
|
|
less_equal = <ufunc 'less_equal'>
|
|
little_endian = True
|
|
log = <ufunc 'log'>
|
|
log10 = <ufunc 'log10'>
|
|
log1p = <ufunc 'log1p'>
|
|
logical_and = <ufunc 'logical_and'>
|
|
logical_not = <ufunc 'logical_not'>
|
|
logical_or = <ufunc 'logical_or'>
|
|
logical_xor = <ufunc 'logical_xor'>
|
|
maximum = <ufunc 'maximum'>
|
|
mgrid = <numpy.lib.index_tricks.nd_grid object at 0x2b0c49aaba50>
|
|
minimum = <ufunc 'minimum'>
|
|
mod = <ufunc 'remainder'>
|
|
modf = <ufunc 'modf'>
|
|
multiply = <ufunc 'multiply'>
|
|
nan = nan
|
|
nbytes = {<type 'numpy.int64'>: 8, <type 'numpy.int16'>: 2, <t...
|
|
negative = <ufunc 'negative'>
|
|
not_equal = <ufunc 'not_equal'>
|
|
ogrid = <numpy.lib.index_tricks.nd_grid object at 0x2b0c49aaba90>
|
|
ones_like = <ufunc 'ones_like'>
|
|
pi = 3.14159265359
|
|
power = <ufunc 'power'>
|
|
r_ = <numpy.lib.index_tricks.r_class object at 0x2b0c49aabb10>
|
|
reciprocal = <ufunc 'reciprocal'>
|
|
remainder = <ufunc 'remainder'>
|
|
right_shift = <ufunc 'right_shift'>
|
|
rint = <ufunc 'rint'>
|
|
s_ = <numpy.lib.index_tricks._index_expression_class object at...
|
|
sctypeDict = { 0: <type 'numpy.bool_'>, 1: <type 'numpy.int8'>, ...
|
|
sctypeNA = { ' ? ' : ' Bool ' , ' B ' : ' UInt8 ' , ' Bool ' : <type 'numpy.bo...
|
|
sctypes = { ' complex ' : [ <type 'numpy.complex64'>, <type 'numpy....
|
|
signbit = <ufunc 'signbit'>
|
|
sin = <ufunc 'sin'>
|
|
sinh = <ufunc 'sinh'>
|
|
sqrt = <ufunc 'sqrt'>
|
|
square = <ufunc 'square'>
|
|
subtract = <ufunc 'subtract'>
|
|
tan = <ufunc 'tan'>
|
|
tanh = <ufunc 'tanh'>
|
|
true_divide = <ufunc 'true_divide'>
|
|
typeDict = { 0: <type 'numpy.bool_'>, 1: <type 'numpy.int8'>, 2...
|
|
typeNA = { ' ? ' : ' Bool ' , ' B ' : ' UInt8 ' , ' Bool ' : <type 'numpy.bool...
|
Imports:
ScipyTest,
PackageLoader,
NumpyTest,
show_config,
pkgload,
putmask,
Unpickler,
Character,
arraytype,
shape,
LittleEndian,
cumsum,
choose,
NewAxis,
ravel,
string,
PyObject,
ones,
arrayrange,
UnsignedInt32,
UfuncType,
dumps,
convolve,
indices,
loads,
Pickler,
where,
PrecisionError,
dump,
argmax,
product,
sign,
Complex,
arange,
allclose,
nonzero,
asarray,
sum,
math,
concatenate,
pickle_array,
vdot,
transpose,
array2string,
diagonal,
put,
UInt64,
StringIO,
argsort,
load,
rank,
array,
UnsignedInt64,
size,
sometrue,
cross_correlate,
alltrue,
zeros,
identity,
UnsignedInt8,
empty,
sort,
LoadArray,
cumproduct,
matrixmultiply,
multiarray,
UInt,
typecodes,
copy,
resize,
fromfunction,
argmin,
Int,
UInt128,
UInt32,
pickle,
copy_reg,
clip,
DumpArray,
ArrayType,
array_constructor,
innerproduct,
around,
reshape,
UInt16,
take,
array_str,
sarray,
outerproduct,
repeat,
trace,
UnsignedInteger,
compress,
UInt8,
UnsignedInt128,
types,
UnsignedInt16,
fromstring,
average,
Float,
searchsorted,
array_repr,
swapaxes,
dot,
Gnuplot,
MachAr,
RankWarning,
add_docstring,
add_newdoc,
add_newdocs,
alen,
all,
alterdot,
amax,
amin,
angle,
any,
append,
apply_along_axis,
apply_over_axes,
argwhere,
array_equal,
array_equiv,
array_split,
asanyarray,
asarray_chkfinite,
ascontiguousarray,
asfarray,
asfortranarray,
asmatrix,
asscalar,
atleast_1d,
atleast_2d,
atleast_3d,
bartlett,
base_repr,
binary_repr,
bincount,
blackman,
bmat,
bool8,
bool_,
broadcast,
byte,
byte_bounds,
can_cast,
cdouble,
cfloat,
char,
character,
chararray,
clongdouble,
clongfloat,
column_stack,
common_type,
compare_chararrays,
complex128,
complex256,
complex64,
complex_,
complexfloating,
corrcoef,
correlate,
cov,
cross,
csingle,
ctypeslib,
cumprod,
delete,
deprecate,
diag,
diagflat,
diff,
digitize,
disp,
double,
dsplit,
dstack,
dtype,
ediff1d,
emath,
empty_like,
errstate,
expand_dims,
extract,
eye,
fastCopyAndTranspose,
fft,
finfo,
fix,
flatiter,
flatnonzero,
flexible,
fliplr,
flipud,
float128,
float32,
float64,
float_,
floating,
format_parser,
frombuffer,
fromfile,
fromiter,
frompyfunc,
generic,
get_array_wrap,
get_include,
get_numarray_include,
get_numpy_include,
get_printoptions,
getbuffer,
getbufsize,
geterr,
geterrcall,
geterrobj,
gradient,
hamming,
hanning,
histogram,
histogram2d,
histogramdd,
hsplit,
hstack,
i0,
iinfo,
imag,
inexact,
info,
inner,
insert,
int0,
int16,
int32,
int64,
int8,
int_,
int_asbuffer,
intc,
integer,
interp,
intersect1d,
intersect1d_nu,
intp,
iscomplex,
iscomplexobj,
isfortran,
isneginf,
isposinf,
isreal,
isrealobj,
isscalar,
issctype,
issubclass_,
issubdtype,
issubsctype,
iterable,
ix_,
kaiser,
kron,
lexsort,
linalg,
linspace,
loadtxt,
log2,
logspace,
longcomplex,
longdouble,
longfloat,
longlong,
ma,
mat,
matrix,
maximum_sctype,
may_share_memory,
mean,
median,
memmap,
meshgrid,
mintypecode,
msort,
nan_to_num,
nanargmax,
nanargmin,
nanmax,
nanmin,
nansum,
ndarray,
ndenumerate,
ndim,
ndindex,
newbuffer,
number,
obj2sctype,
object0,
object_,
outer,
piecewise,
place,
poly,
poly1d,
polyadd,
polyder,
polydiv,
polyfit,
polyint,
polymul,
polysub,
polyval,
prod,
ptp,
random,
real,
real_if_close,
rec,
recarray,
record,
require,
restoredot,
roll,
rollaxis,
roots,
rot90,
round_,
row_stack,
savetxt,
sctype2char,
select,
set_numeric_ops,
set_printoptions,
set_string_function,
setbufsize,
setdiff1d,
seterr,
seterrcall,
seterrobj,
setmember1d,
setxor1d,
short,
signedinteger,
sinc,
single,
singlecomplex,
sort_complex,
source,
split,
squeeze,
std,
str_,
string0,
string_,
tensordot,
test,
tile,
trapz,
tri,
tril,
trim_zeros,
triu,
typename,
ubyte,
ufunc,
uint,
uint0,
uint16,
uint32,
uint64,
uint8,
uintc,
uintp,
ulonglong,
unicode0,
unicode_,
union1d,
unique,
unique1d,
unravel_index,
unsignedinteger,
unwrap,
ushort,
vander,
var,
vectorize,
void,
void0,
vsplit,
vstack,
who,
zeros_like
ScalarType
- Value:
( <type 'int'>,
<type 'float'>,
<type 'complex'>,
<type 'long'>,
<type 'bool'>,
<type 'str'>,
<type 'unicode'>,
<type 'buffer'>,
...
|
|
cast
- Value:
{<type 'numpy.int64'>: <function <lambda> at 0x2b0c49163488>, <type 'n
umpy.int16'>: <function <lambda> at 0x2b0c49163500>, <type 'numpy.floa
t64'>: <function <lambda> at 0x2b0c49163578>, <type 'numpy.complex128'
>: <function <lambda> at 0x2b0c491635f0>, <type 'numpy.void'>: <functi
on <lambda> at 0x2b0c49163668>, <type 'numpy.complex256'>: <function <
lambda> at 0x2b0c49163c80>, <type 'numpy.uint64'>: <function <lambda>
at 0x2b0c49163758>, <type 'numpy.unicode_'>: <function <lambda> at 0x2
b0c49163b18>, <type 'numpy.float128'>: <function <lambda> at 0x2b0c491
...
|
|
index_exp
- Value:
<numpy.lib.index_tricks._index_expression_class object at 0x2b0c49aabc
d0>
|
|
nbytes
- Value:
{<type 'numpy.int64'>: 8, <type 'numpy.int16'>: 2, <type 'numpy.float6
4'>: 8, <type 'numpy.complex128'>: 16, <type 'numpy.void'>: 0, <type '
numpy.float32'>: 4, <type 'numpy.uint64'>: 8, <type 'numpy.int32'>: 4,
<type 'numpy.complex64'>: 8, <type 'numpy.int8'>: 1, <type 'numpy.flo
at128'>: 16, <type 'numpy.string_'>: 0, <type 'numpy.uint32'>: 4, <typ
e 'numpy.object_'>: 8, <type 'numpy.unicode_'>: 0, <type 'numpy.uint16
'>: 2, <type 'numpy.bool_'>: 1, <type 'numpy.complex256'>: 32, <type '
numpy.uint8'>: 1, <type 'numpy.uint64'>: 8, <type 'numpy.int64'>: 8}
|
|
s_
- Value:
<numpy.lib.index_tricks._index_expression_class object at 0x2b0c49aabd
10>
|
|
sctypeDict
- Value:
{ 0: <type 'numpy.bool_'>,
1: <type 'numpy.int8'>,
2: <type 'numpy.uint8'>,
3: <type 'numpy.int16'>,
4: <type 'numpy.uint16'>,
5: <type 'numpy.int32'>,
6: <type 'numpy.uint32'>,
7: <type 'numpy.int64'>,
...
|
|
sctypeNA
- Value:
{ ' ? ' : ' Bool ' ,
' B ' : ' UInt8 ' ,
' Bool ' : <type 'numpy.bool_'>,
' Complex128 ' : <type 'numpy.complex256'>,
' Complex32 ' : <type 'numpy.complex64'>,
' Complex64 ' : <type 'numpy.complex128'>,
' D ' : ' Complex64 ' ,
' F ' : ' Complex32 ' ,
...
|
|
sctypes
- Value:
{ ' complex ' : [ <type 'numpy.complex64'>,
<type 'numpy.complex128'>,
<type 'numpy.complex256'>] ,
' float ' : [ <type 'numpy.float32'>,
<type 'numpy.float64'>,
<type 'numpy.float128'>] ,
' int ' : [ <type 'numpy.int8'>,
<type 'numpy.int16'>,
...
|
|
typeDict
- Value:
{ 0: <type 'numpy.bool_'>,
1: <type 'numpy.int8'>,
2: <type 'numpy.uint8'>,
3: <type 'numpy.int16'>,
4: <type 'numpy.uint16'>,
5: <type 'numpy.int32'>,
6: <type 'numpy.uint32'>,
7: <type 'numpy.int64'>,
...
|
|
typeNA
- Value:
{ ' ? ' : ' Bool ' ,
' B ' : ' UInt8 ' ,
' Bool ' : <type 'numpy.bool_'>,
' Complex128 ' : <type 'numpy.complex256'>,
' Complex32 ' : <type 'numpy.complex64'>,
' Complex64 ' : <type 'numpy.complex128'>,
' D ' : ' Complex64 ' ,
' F ' : ' Complex32 ' ,
...
|
|