Philipp Hofemeier: Israel OpenFOAM user group meeting, July 30, 2012

Computational simulations of inhaled ultrafine aerosols in the distal regions of the lung

Philipp Hofemeier

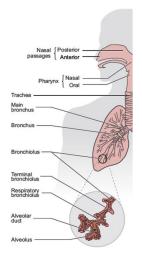
Supervisor: Josué Sznitman Dept. of Biomedical Engineering, Technion, Israel


July 30, 2012

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Content

1 Introduction



Philipp Hofemeier: Israel OpenFOAM user group meeting, July 30, 2012 Introduction

Introduction

Simulation of inhaled ultrafine particles

- Realistic 3D geometries from morphometric models or reconstructed imaging data
- Transient particle simulation including sedimentation, convection & diffusion
- Fluid-structure interaction (FSI) to mimic physiological breathing motion

Sac

Philipp Hofemeier: Israel OpenFOAM user group meeting, July 30, 2012 Physics & Simulation

Fluid & particle properties

Fluid - Air

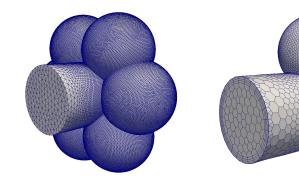
- Characteristic length $D_{ch} \sim 100~\mu m$
- Reynolds number regime $Re \leq 1$
- Womersely number $W\!o \leq 1$
- Flow induced by domain deformation

Particles

- Diameter 0.05 $\mu m \leq D \leq$ 5 μm
- Peclet number $Pe \leq 1$
- Concentration $C_{Particle} \ll 1 \ vol.\%$

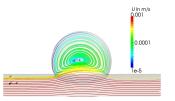
Philipp Hofemeier: Israel OpenFOAM user group meeting, July 30, 2012 Physics & Simulation

CFD - OpenFOAM


Version	2.1.1
Solver	pimpleDyM & icoUncoupledKinematicParcel
Spacial discretisation	linear / upwind
Temporal discretisation	fully implicit
Mesh motion	kinematic, self-similar & sinusoidal
Fluid-Particle coupling	one-way coupled
Particle forces	standard gravity & drag, working on Brownian motion

< □ > < □ > < 三 > < 三 > < 三 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

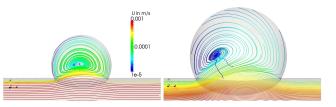
Philipp Hofemeier: Israel OpenFOAM user group meeting, July 30, 2012 Physics & Simulation


Mesh generation

Software: Gambit (Ansys) and polyDualMesh (OF)

Single alveoli

Characteristic flow patterns with increasing depth of the lung



Single alveoli

Characteristic flow patterns with increasing depth of the lung

・ロト ・ 理ト ・ モト ・ モト

Э

Single alveoli

Characteristic flow patterns with increasing depth of the lung

・ロト ・ 聞 ト ・ 注 ト ・ 注 ト

3

Particle simulations

Video.

Particle deposition in acinus ($d=1~\mu m$), at $\sim 0.5 x$

Philipp Hofemeier: Israel OpenFOAM user group meeting, July 30, 2012 Outlook

Future work

- Implement and test a Brownian motion model (random walk)
- Build geometries with increasing complexity and test different morphometric models

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Implement a FSI solver (possible: icoFsiFoam)

Philipp Hofemeier: Israel OpenFOAM user group meeting, July 30, 2012

Thank you for listening. Any questions?