
snappyHexMesh

Theory and Application

© Copyright 2016 ENGYS Limited. All rights reserved.

11th OpenFOAM Workshop

26 June – 30 June 2016

Guimarães, Portugal

Andrew Jackson

Daniel P. Combest

info@engys.com | Tel: +44 (0)20 32393041 | Fax: +44 (0)20 33573123 | www.engys.com

Disclaimer

OPENFOAM® is a trademark of OpenCFD
(ESI Group). This presentation is not
approved or endorsed by OpenCFD or ESI
Group, the owner of the OPENFOAM®
trademark.

© Copyright 2016 ENGYS Limited. All rights reserved.

Contents

• snappyHexMesh

 Description and Key Features

 Background, Origin, and Forks

 Brief Code Overview

 Methodology Overview

• Manual Setup

• Meshing with HELYX-OS

 Backward Facing Step

 Pipe

 Reactor Geometry

• Closing Remarks

© Copyright 2016 ENGYS Limited. All rights reserved.

Contents

• snappyHexMesh

 Description and Key Features

 Background, Origin, and Forks

 Brief Code Overview

 Methodology Overview

• Manual Setup

• Meshing with HELYX-OS

 Backward Facing Step

 Pipe

 Reactor Geometry

• Closing Remarks

© Copyright 2016 ENGYS Limited. All rights reserved.

Description and Key Features

Utility snappyHexMesh is used to create
automatically high quality three-dimensional hex-
dominant meshes from input of triangulated
surfaces or simple primitive shapes

© Copyright 2016 ENGYS Limited. All rights reserved.

Description and Key Features

Fully parallel execution

 Base mesh is created in serial and then distributed to
n-processors

 True parallel performance depends on mesh
composition but tens of millions of cells can be created
rapidly on complex geometries

 Optimal decomposition via ptScotch and dynamic load
balancing allows for improved performance

© Copyright 2016 ENGYS Limited. All rights reserved.

Description and Key Features

Surface, Volume, Edge Refinement

 Surface refinement based on curvature of the input
geometry

 Volume refinement (inside/outside/distance) based on
primitive objects or additional imported geometry

 Edge refinement based on eMesh description

© Copyright 2016 ENGYS Limited. All rights reserved.

Description and Key Features

Feature Edge and Surface Detail Preservation

 Automatic surface mesh created during edge, surface,
and volume refinement and feature snapping phase

 Users provide STL, OBJ, or NASTRAN surface mesh files

 Surface detail is controlled by surface geometry detail
and local cell size

© Copyright 2016 ENGYS Limited. All rights reserved.

Description and Key Features

Zonal Meshing

 Allows for creation of cellZones for source terms e.g.
porous media, MRF and other fvOptions

 Enables multi-region meshing for conjugate heat
transfer and/or dynamic mesh cases with automatic
generation of coupling via AMI patches

© Copyright 2016 ENGYS Limited. All rights reserved.

Description and Key Features

Wall Layer Addition

To allow for better modeling of near wall phenomena
e.g. boundary layer formation

 Near wall first cell height, total layer thickness, number
of layers, etc. to be specified

© Copyright 2016 ENGYS Limited. All rights reserved.

Description and Key Features

Quality guaranteed final mesh that will run in
OPENFOAM®

Key mesh quality metrics include:

Meshes that do not meet quality criteria are scaled back
to previous “high-quality“ state

© Copyright 2016 ENGYS Limited. All rights reserved.

• Orthogonality
• Pyramid Volume
• Concavity
• Face Area
• Skewness

• Tet Decomposition Quality
• Face Twist
• Determinants
• Face Weights
• Volume Ratios

Background | Original and Current Dev.

© Copyright 2016 ENGYS Limited. All rights reserved.

• Introduced 3rd OpenFOAM Workshop in Milan
2008

 “Automatic Parallel Polyhedral Mesh Generation on
Complex Geometries in OpenFOAM” E. de Villiers,
A. Jackson (Engys), M. Janssens (OpenCFD Ltd)

• A version of snappyHexMesh called
helyxHexMesh continues to be developed by
Engys

Background | Original and Current Dev.

• Enhanced parallel performance
 Reduced overall memory usage

 Improved scaling for 32+ processors

• Graphical User interface Integration
 HELYX

 HELYX-OS

 ELEMENTS

© Copyright 2016 ENGYS Limited. All rights reserved.

ENGYS’ Continued Developments on an In-House Version

• Enhanced feature capturing and
automation

• Improved layers and layer
specification methods

• Anisotropic volumetric refinement
• Generation of Internal layers

• Topological improvements
• Automatic block mesh creation and

decomposition
• Mesh wrapping and small leak

closure
• and many other extensions

Background | Motorbike Tutorial Case

© Copyright 2016 ENGYS Limited. All rights reserved.

OpenFOAM-Plus snappyHexMesh
Number Cells 352K
Layer coverage 57%

helyxHexMesh
Number Cells 362K
Layer coverage 85%

Background | Motorbike Tutorial Case

© Copyright 2016 ENGYS Limited. All rights reserved.

OpenFOAM-Plus snappyHexMesh
Number Cells 352K
Layer coverage 57%

helyxHexMesh
Number Cells 362K
Layer coverage 85%

Background | Original and Current Dev.

© Copyright 2016 ENGYS Limited. All rights reserved.

ENGYS currently working on new dualised mesh generator

• Improved layer coverage
• Reduced jump in cell volume

at refinement interfaces
• Optimisation to improve mesh

quality
• Improved surface topology

Code Overview | snappyHexMesh

Overview of snappyHexMesh.C

• Reads the base mesh

• Reads the geometry files

• Reads all user provided information from
system/snappyHexMeshDict

• Instantiates and calls mesh refinement, snapping,
and layer addition drivers

• Outputs balanced mesh

Majority of the work is performed in separate
classes constructed in this utility

© Copyright 2016 ENGYS Limited. All rights reserved.

Code Overview | C++ Classes

Main Library autoMesh

• Contains refinement, snapping and layer addition
routines in 44k lines of code

Core OpenFOAM libraries

• Leveraging data structures and methods for
performing low level tasks including

• changing the mesh topology

• octree’s for surface intersection checking

• Determine optimal decomposition during load
balancing

© Copyright 2016 ENGYS Limited. All rights reserved.

Code Overview | C++ Classes

© Copyright 2016 ENGYS Limited. All rights reserved.

• searchableSurfaces.H container for searchable objects
with methods for finding nearest and line point
intersections with the surface
 triSurfaceMesh.H constructs triangulated surface

and uses indexedOctree.H class for hierarchical
recursive search on these

 searchableCylinder.H and other primitive shape (e.g
searchableSphere.H and searchablePlane.H) classes
are available

Geometry

Code Overview | C++ Classes

© Copyright 2016 ENGYS Limited. All rights reserved.

• refinementSurfaces.H class is container for data used for
surface driven refinement e.g. refinement level

• refinementFeatures.H class is a container for data used
for feature based queries

• shellSurfaces.H class is a container for performing
queries for volumetric based refinement

Refinement Containers

Code Overview | C++ Classes

• autoRefineDriver.H class controls which refinement
methods are used

• meshRefinement.H class for selecting which cells to
refine and zone. Controlled by separate included files
 Cells to refine (meshRefinementRefine.C)
 Cells to zone (meshRefinementBaffles.C)
 Cells remove based on topology and geometric

checks (meshRefinementProblemCells.C)
 Patch faces to merge (meshRefinementMerge.C)

• hexRef8.H class performs the actual refinement of (split)
hexes using the polyTopoChange.H class. This is also the
same engine used by the dynamic mesh refinement

Refinement

© Copyright 2016 ENGYS Limited. All rights reserved.

Code Overview | C++ Classes

© Copyright 2016 ENGYS Limited. All rights reserved.

• snapParameters.H class is container for snap specific
information

• autoSnapDriver.H class performs snapping of mesh to
the surface and methods for feature extraction (see
autoSnapDriveFeature.C)

Snapping

Code Overview | C++ Classes

© Copyright 2016 ENGYS Limited. All rights reserved.

• layerParameters.H class is container for layer specific
information

• autoLayerDriver.H controls methods for layer generation
• externalDisplacementMeshMover.H is virtual base class

for mesh motion away from the surface. The default
method is based on a medial axis calculation (see
medialAxisMeshMover.H) . A displacement motion
solver method is also available (see
displacmentMotionSolverMeshMover.H)

• addPatchCellLayers.H class performs addition of layer of
cells to an indirect primitive patch (class is also used by
extrudeMesh utility)

Layers

Code Overview | C++ Classes

© Copyright 2016 ENGYS Limited. All rights reserved.

• motionSmoother.H class part of the dynamicMesh
library is used for performing mesh scaling back based
on mesh quality checks (see
meshSmootherAlgoCheck.C)

• polyMeshGeometry.H class performs actual mesh
quality checks and flags faces and cells that are in error

Mesh Quality

Methodology Overview | Usage

• Define snappyHexMeshDict → Execute snappyHexMesh

• Execution:

snappyHexMesh [-noFunctionObjects][-overwrite] [-parallel]

[-checkGeometry][-surfaceSimplify][-case dir]

[-roots <(dir1 .. dirN)>] [-help]

 Parallel execution available using mpirun

• Requirements:

 Dictionary file system/snappyHexMeshDict

 Geometry data (stl, nas, obj) in constant/triSurface

 Hexahedral base mesh (decomposed if running in parallel)

 Dictionary file system/decomposeParDict for parallel runs

 All system dictionaries (e.g controlDict, fvSchemes, fvSolutions)

© Copyright 2016 ENGYS Limited. All rights reserved.

Methodology Overview | Workflow

• Manually

• Scripted

• Graphical User
Interface

© Copyright 2016 ENGYS Limited. All rights reserved.

Define blockMeshDict

Execute blockMesh

Define snappyHexMeshDict

Execute snappyHexMesh

Define decomposeParDict

Execute decomposePar

Methodology Overview | Base Mesh

• Step 1: Create base mesh
 Custom made → Using utility blockMesh

© Copyright 2016 ENGYS Limited. All rights reserved.

STL or Nastran
(constant/triSurface)

Hexahedral base
mesh → level 0 size

NOTE: File names must not
contain any spaces, unusual
characters or begin with a
number. The same applies to the
names of the parts and regions
defined within the geometry
files.

Note: Cells should be close to unit Aspect Ratio for optimum behaviour

Methodology Overview | Base Refine

• Step 2: Refine base mesh

 Surface refinement → feature lines, proximity & curvature

 Volume refinement → closed surfaces, geometric shapes

© Copyright 2016 ENGYS Limited. All rights reserved.

Level 0

Level 1

Level 2

Level 3

Methodology Overview | Base Refine

• Step 2: Refine base mesh

 Surface refinement → feature lines, proximity & curvature

 Volume refinement → closed surfaces, geometric shapes

© Copyright 2016 ENGYS Limited. All rights reserved.

Methodology Overview | Remove Cells

• Step 3: Remove unused cells

 User defines keep point

© Copyright 2016 ENGYS Limited. All rights reserved.

Castellated mesh

Methodology Overview | Snapping

• Step 4: Snap mesh to surface

 Implicit wrapping → Preserve features

 Smooth & Merge faces

© Copyright 2016 ENGYS Limited. All rights reserved.

“Snapped” Edge

Methodology Overview | Snapping

• Step 4: Snap mesh to surface

 Implicit wrapping → Preserve features

 Smooth & Merge faces

© Copyright 2016 ENGYS Limited. All rights reserved.

Original STL Surface Snapped Surface

Methodology Overview | Layers + Final

• Step 5: Add layers to the surface

• Step 6: Final load balance

 Output to file

© Copyright 2016 ENGYS Limited. All rights reserved.

 Push mesh away from
surface

 Add layers

 Check quality

 Scale back displacement if
errors

 Repeat until all quality
checks pass

Methodology Overview | Overall

© Copyright 2016 ENGYS Limited. All rights reserved.

Contents

• snappyHexMesh

 Description and Key Features

 Background, Origin, and Forks

 Brief Code Overview

 Methodology Overview

• Manual Setup

• Meshing with HELYX-OS

 Backward Facing Step

 Pipe

 Reactor Geometry

• Closing Remarks

© Copyright 2016 ENGYS Limited. All rights reserved.

Manual Setup

Manually specify system/snappyHexMeshDict

© Copyright 2016 ENGYS Limited. All rights reserved.

Contents

• snappyHexMesh

 Description and Key Features

 Background, Origin, and Forks

 Brief Code Overview

 Methodology Overview

• Manual Setup

• Meshing with HELYX-OS

 Backward Facing Step

 Reactor Geometry

 Tube-Bend

• Closing Remarks

© Copyright 2016 ENGYS Limited. All rights reserved.

Meshing with HELYX-OS

Overall Goal of Session

• Connect meshing methodology with HELYX-OS controls

• Technology preview of the new version of HELYX-OS

Skills Obtained

Importing STLs

Creating base meshes

Setting surface refinement

Extracting feature lines

Creating volume refinement boxes

Adding layers

© Copyright 2016 ENGYS Limited. All rights reserved.

Meshing with HELYX-OS

Requirements

Installed version of HELYX-OS

 Technology preview of HELYX-OS v2.4.0 on workshop image

 Or HELYX-OS v 2.3.1 http://engys.github.io/HELYX-OS/

Minimum of 1 core, suggested multiple cores

Download the geometry files from the workshop website

© Copyright 2016 ENGYS Limited. All rights reserved.

http://engys.github.io/HELYX-OS/

Meshing with HELYX-OS

The Interface

© Copyright 2016 ENGYS Limited. All rights reserved.

View Port

Data Panel

Info Bar

Meshing with HELYX-OS

The Interface

© Copyright 2016 ENGYS Limited. All rights reserved.
Info Bar

Main Toolbar
Menu Bar

Meshing with HELYX-OS

The Interface

Copyright © 2016 ENGYS. All rights reserved.

Domain/
Geometry

Bounds

View
Controls

Meshing with HELYX-OS

The Interface

Copyright © 2016 ENGYS. All rights reserved.

Start on the meshing tab and work our way down the tree

Tree Entries

Tabs

Backward Facing Step | Usage Intro

Copyright © 2016 ENGYS. All rights reserved.

Overall Goal of Session

• Introduce controls of HELYX-OS

Skills Obtained

Creating base meshes

Setting surface refinement

Extracting feature lines

Creating volume refinement boxes

Backward Facing Step | Usage Intro

© Copyright 2016 ENGYS Limited. All rights reserved.

Starting Screen

Recent Cases
• New
• Open
• Exit

Backward Facing Step | Usage Intro

© Copyright 2016 ENGYS Limited. All rights reserved.

Case Creation

Case Name

Parent Folder

Parallel Settings

Backward Facing Step | Usage Intro

© Copyright 2016 ENGYS Limited. All rights reserved.

Backward Facing Step | Usage Intro

© Copyright 2016 ENGYS Limited. All rights reserved.

Automatic

• Creates background mesh

• Used for close geometries

From File

• Lets you to create, import,
edit existing
blockMeshDict files

Defining a Base Mesh

Backward Facing Step | Usage Intro

© Copyright 2016 ENGYS Limited. All rights reserved.

User Defined

• User provides min and max bounds of x,y,z

• User provides number of elements in each
direction

Defining a Base Mesh

Backward Facing Step | Usage Intro

© Copyright 2016 ENGYS Limited. All rights reserved.

1. Choose “User Defined”

2. Configure a mesh with these settings

Defining a Base Mesh

Backward Facing Step | Usage Intro

© Copyright 2016 ENGYS Limited. All rights reserved.

3. Click on “ffminx” in the tree

4. Change the Face Name to inlet

Backward Facing Step | Usage Intro

© Copyright 2016 ENGYS Limited. All rights reserved.

4. Repeat for each of
the following

Defining a Base Mesh

Defining a Box Primitive Object

Backward Facing Step | Usage Intro

© Copyright 2016 ENGYS Limited. All rights reserved.

5. In the geometry tree entry add a box primitive
object named step

6. Set with above min and max

Backward Facing Step | Usage Intro

© Copyright 2016 ENGYS Limited. All rights reserved.

7. In refinement tab, under surface,
set min and max levels to 1

Level 0

Level 1

Defining Surface Refinement

Backward Facing Step | Usage Intro

© Copyright 2016 ENGYS Limited. All rights reserved.

Volume Refinement

8. Create a box
primitive object

9. Named VR1

10.Set a volumetric
refinement mode
inside

11.Set a refinement
level of 1

Backward Facing Step | Usage Intro

© Copyright 2016 ENGYS Limited. All rights reserved.

12.Clone VR1 by RMB and
select clone

Volume Refinement

Backward Facing Step | Usage Intro

© Copyright 2016 ENGYS Limited. All rights reserved.

Volume Refinement

13.Create a box
primitive object

14.Named VR2

15.Set a volumetric
refinement mode
inside

16.Set a refinement
level of 2

Backward Facing Step | Usage Intro

© Copyright 2016 ENGYS Limited. All rights reserved.

17.Select a material point inside the domain
(2,2,0)

18.Select the create button

Set the Material Point

Backward Facing Step | Usage Intro

© Copyright 2016 ENGYS Limited. All rights reserved.

• How do we fix the
issue of snapping at
the top of the step?

• Increase
refinement?

Backward Facing Step | Usage Intro

© Copyright 2016 ENGYS Limited. All rights reserved.

We could increase the surface refinement levels

Level 1 Level 2

Level 3

Surface Refinement

Backward Facing Step | Usage Intro

© Copyright 2016 ENGYS Limited. All rights reserved.

• This will increase
meshing time and still
not solve our issue in
this case

Backward Facing Step | Usage Intro

© Copyright 2016 ENGYS Limited. All rights reserved.

19.In the step, RMB and select extract

20.Select apply and then save in the extract
feature lines tool

Extract Feature Lines

Backward Facing Step | Usage Intro

© Copyright 2016 ENGYS Limited. All rights reserved.

20.Set a distance of 0 and a level of 1

Extract Feature Lines

Note

As distance is
increased,
decrease levels

Backward Facing Step | Usage Intro

© Copyright 2016 ENGYS Limited. All rights reserved.

• Snapping is improved

• Can further move up VR* boxes to refine more

Backward Facing Step | Usage Intro

© Copyright 2016 ENGYS Limited. All rights reserved.

• Background meshes can be made

 Automatically, with only a cell size

 By defining as a simple bounding box and # of
elements

 Provided as a blockMeshDict file for complex base
meshes

• We can build simple domains with primitive
object

• Extracting feature lines can improve snapping as
well as increasing surface refinement

Straight Pipe | Adding Layers

Copyright © 2016 ENGYS. All rights reserved.

Overall Goal of Session

• Basics of layer addition

Skills Obtained

Creating base meshes

Setting surface refinement

Adjusting layer controls and perform a parametric study

Straight Pipe | Adding Layers

© Copyright 2016 ENGYS Limited. All rights reserved.

Define a Base Mesh

1. Create a user defined based mesh

2. Change the ffminx and ffmaxx to inlet and outlet

Straight Pipe | Adding Layers

© Copyright 2016 ENGYS Limited. All rights reserved.

Define a Cylinder Primitive Object

3. Define a cylinder primitive object named pipe

Straight Pipe | Adding Layers

© Copyright 2016 ENGYS Limited. All rights reserved.

Set the Surface Refinement

4. Set the surface refinement for the pipe as 2,2

Adjust the Layer Settings

Straight Pipe | Adding Layers

© Copyright 2016 ENGYS Limited. All rights reserved.

Required

Number of Layers

• first and expansion

• final and expansion

5. Set the number of layers to 10 and leave defaults

Set the Material Point

Straight Pipe | Adding Layers

© Copyright 2016 ENGYS Limited. All rights reserved.

6. Set the material point to (0.25 0 0)

7. Hit create

Layer Settings Parameter Study

Straight Pipe | Adding Layers

© Copyright 2016 ENGYS Limited. All rights reserved.

See how each parameter influences layer addition

Straight Pipe | Adding Layers

© Copyright 2016 ENGYS Limited. All rights reserved.

Parameter Study

Reduce the Number
of Layers to 3

Overall wall layers
and height reduced

Straight Pipe | Adding Layers

© Copyright 2016 ENGYS Limited. All rights reserved.

Parameter Study

Increase the Number
of Layers to 5

Overall wall layers
and height increases

Straight Pipe | Adding Layers

© Copyright 2016 ENGYS Limited. All rights reserved.

Parameter Study

Increase FLT to 0.8

Overall wall layers
stays the same and
height increases

Straight Pipe | Adding Layers

© Copyright 2016 ENGYS Limited. All rights reserved.

Parameter Study

Increase layer
stretching to 1.5

Overall wall layers
stays the same and
height decreases

Straight Pipe | Adding Layers

© Copyright 2016 ENGYS Limited. All rights reserved.

Parameter Study

Increase layer
stretching to 2.5

Drastically squeeze
the first few layers

Straight Pipe | Adding Layers

© Copyright 2016 ENGYS Limited. All rights reserved.

Parameter Study

Delete FLT and add
small LMT or 0.01

Overall wall layers
stays the same height
reduced

Straight Pipe | Adding Layers

© Copyright 2016 ENGYS Limited. All rights reserved.

Parameter Study

Test the limits of
layer addition

Many layers with
similar ratio.

Straight Pipe | Adding Layers

© Copyright 2016 ENGYS Limited. All rights reserved.

Parameter Study

Increase the layer
stretching to 1.2

Layers completely
collapsed

Straight Pipe | Adding Layers

© Copyright 2016 ENGYS Limited. All rights reserved.

Parameter Study

Reduce layer
stretching

Many layers added

Straight Pipe | Adding Layers

© Copyright 2016 ENGYS Limited. All rights reserved.

Parameter Study

Reduce the Layer min
thickness

Small layers, growth
to lager layers, total
coverage

• It is often helpful to choose simplified geometries
to prototype settings and understand how
controls work

• Layer addition can be a very computationally time
consuming action

• Layer collapse is caused by merely the fact that
adding layers will create a worse mesh than
without layers

Straight Pipe | Adding Layers

© Copyright 2016 ENGYS Limited. All rights reserved.

• Try a similar study on a bent pipe and you will
notice different behavior

• Geometry is included in the first link of the
training tube_bend.stl

Straight Pipe | Adding Layers

© Copyright 2016 ENGYS Limited. All rights reserved.

Reactor Geometry | Snapping Practice

Copyright © 2016 ENGYS. All rights reserved.

Overall Goal of Session

• More practice on feature snapping

• Importing STL’s

Skills Obtained

Creating base meshes

Setting surface refinement

Adjusting layer controls and perform a parametric study

Be able to improve bad feature capturing

Reactor Geometry | Snapping Practice

Load the geometry files located in reactor.zip

1. Inlet

2. Outlet

3. Walls

Set base mesh to “automatic” and 0.5 and mesh

© Copyright 2016 ENGYS Limited. All rights reserved.

Reactor Geometry | Snapping Practice

• Change the min and max levels of walls to (1,1)

• Lack of resolution?

• Is snapping bad?

• Suggestions?

Try increasing the refinement levels and remesh

© Copyright 2016 ENGYS Limited. All rights reserved.

Reactor Geometry | Snapping Practice

• Change the min and max levels of walls to (1,2)

Poor edge capturing

Try increasing the refinement again and remesh

© Copyright 2016 ENGYS Limited. All rights reserved.

Reactor Geometry | Snapping Practice

• Change the min and max levels of walls to (2,3)

Sufficient?

Use the feature edge extraction tool

© Copyright 2016 ENGYS Limited. All rights reserved.

Reactor Geometry | Snapping Practice

• Right click on STL surface, then select “extract”

© Copyright 2016 ENGYS Limited. All rights reserved.

Hit apply to preview and save to save an emesh

Reactor Geometry | Snapping Practice

• In the lines dialog on the newly created emesh

© Copyright 2016 ENGYS Limited. All rights reserved.

• Set to level 3

• Remesh

We now have a much improved mesh

Reactor Geometry | Snapping Practice

Progression of refinement

© Copyright 2016 ENGYS Limited. All rights reserved.

• Base mesh size chosen by geometry size and available
computing power

• Increase levels accordingly and extract feature edges

• Requires very little adjustment to metrics and defaults

Contents

• snappyHexMesh

 Description and Key Features

 Background, Origin, and Forks

 Brief Code Overview

 Methodology Overview

• Using HELYX-OS for Meshing

 Backward Facing Step

 Straight Pipe

 Reactor Geometry

• Closing Remarks

© Copyright 2016 ENGYS Limited. All rights reserved.

Closing Remarks | Common Problems

• Castellation prior to snapping unsuccessful

• Trouble snapping to features

• Difficulty in adding layers

• Layers collapsing in certain regions

• Difficulty in choosing default values

© Copyright 2016 ENGYS Limited. All rights reserved.

Closing Remarks | Common Problems

• Castellation prior to snapping unsuccessful

 Often a result in using an STL surface that is not water-tight.
This prevents the algorithm from deciding what cells are in
the region occupied by the keep point.

 STL surface must be repaired and gaps closed to continue

© Copyright 2016 ENGYS Limited. All rights reserved.

Closing Remarks | Common Problems

• Castellation prior to snapping unsuccessful

• Trouble snapping to features

 Often caused by too coarse a base-mesh or surfaces that are
not easily identified by a feature angle

 Lower your base-mesh spacing to a smaller value

 Try distance refinement near the surface having trouble
snapping

 Increase your levels on that particular surface

 Use explicit feature snapping and create eMesh or feature
edge extraction utility

© Copyright 2016 ENGYS Limited. All rights reserved.

Try these remedies separately to begin

Closing Remarks | Common Problems

• Castellation prior to snapping unsuccessful

• Trouble snapping to features

• Difficulty in adding layers

 Caused purely by the addition of a layer does not meet the
quality criteria

 Further caused by near wall cells being too large or poor
quality

 Remedied by refining near surface of interest or adding a
smaller number of layers to begin

© Copyright 2016 ENGYS Limited. All rights reserved.

Closing Remarks | Common Problems

• Castellation prior to snapping unsuccessful

• Trouble snapping to features

• Difficulty in adding layers

• Layers collapsing in certain regions

 Again caused by poor quality cells or too large of cells

 Refine cells near the region of interest

© Copyright 2016 ENGYS Limited. All rights reserved.

Closing Remarks | Common Problems

• Castellation prior to snapping unsuccessful

• Trouble snapping to features

• Difficulty in adding layers

• Layers collapsing in certain regions

• Difficulty in choosing default values

 Use existing tutorials or use the defaults set by HELYX-OS

© Copyright 2016 ENGYS Limited. All rights reserved.

Closing Remarks | Overall

• Overall
 Coordinate system aligned surface are easier to mesh

 It is best not to change the meshQuality settings too much

 Wedges can be difficult since cells are collapsed in narrow
regions

 Distance refinement is a per STL surface feature and not a per
patch feature.

• Get around this by importing separate STL files for each patch

© Copyright 2016 ENGYS Limited. All rights reserved.

Closing Remarks | Overall

• Snapping

 Increasing min and max for a particular surface has the same
affect as decreasing level 0 size

 eMeshes can help fully resolve edges, only if base mesh is
sufficiently fine

 We can further increase snapping if we increase snapping
iterations see appendix

• Layer Addition

 Thinner layers are easier to insert

 Use relative size rather than absolute layer size

 More uniform cells near a surface will have a more uniform
boundary layer meshes

© Copyright 2016 ENGYS Limited. All rights reserved.

Disclaimer

ENGYS Limited is the proprietor of the copyright subsisting in this
work. No part of this work may be translated, reprinted or
reproduced or utilised in any material form either in whole or in
part or by any electronic, mechanical or other means, now known
or invented in the future, including photocopying and recording, or
in any information storage and retrieval system, without prior
written permission from ENGYS Limited.

Applications for permission to reproduce any part of this work
should be addressed to ENGYS Limited at info@engys.com

info@engys.com | Tel: +44 (0)20 32393041 | Fax: +44 (0)20 33573123 | www.engys.com

© Copyright 2016 ENGYS Limited. All rights reserved.

mailto:info@engys.com

A1: snappyHexMeshDict
Appendix A1: References for snappyHexMeshDict

© Copyright 2016 ENGYS Limited. All rights reserved.

Andrew Jackson. A Comprehensive Tour of
snappyHexMesh. 7th OpenFOAM Workshop.
June 25 2013. Darmstadt Germany.

Paolo Geremia and Eugene de Villiers. A
Comprehensive Tour of snappyHexMesh
with HELYX-OS. Workshop "HPC enabling of
OpenFOAM for CFD applications”, 26-28
November 2012, Bologna, Italy

A1: snappyHexMeshDict
Dictionary file consists of five main sections:

© Copyright 2016 ENGYS Limited. All rights reserved.

• Prescribe geometry entities for meshing

geometry

• Prescribe feature, surface and volume mesh refinements

castellatedMeshControls

• Control mesh surface snapping

snapControls

• Control boundary layer mesh growth

addLayersControls

• Control mesh quality metrics

meshQualityControls

A1: Basic Controls

© Copyright 2016 ENGYS Limited. All rights reserved.

File header

Keywords

• Switch on/off mesh steps

FoamFile
{

version 2.0;
format ascii;
class dictionary;
object autoHexMeshDict;

}
castellatedMesh true;
snap true;
addLayers false;

geometry
{

flange.stl
{

type triSurfaceMesh;
name flange;

}
sphereA
{

type searchableSphere;
centre (0 0 -0.012);
radius 0.003;

}
}

A1: geometry

© Copyright 2016 ENGYS Limited. All rights reserved.

Definition of geometry types

• STL and Nastran files → serial or

distributed

• Basic shapes → box, cylinder,

sphere...

FoamFile
{

version 2.0;
format ascii;
class dictionary;
object autoHexMeshDict;

}
castellatedMesh true;
snap true;
addLayers false;

geometry
{

flange.stl
{

type triSurfaceMesh;
name flange;

}
sphereA
{

type searchableSphere;
centre (0 0 -0.012);
radius 0.003;

}
}

A1: Supported Types

© Copyright 2016 ENGYS Limited. All rights reserved.

geomB.stl
{

type distributedTriSurfaceMesh;
distributionType follow;
name geomB;

}

geomA.stl
{

type triSurfaceMesh;
name geomA;

}

Triangulated (e.g. Nastran, STL, OBJ)

• The standard type “triSurfaceMesh” reads

a copy of each surface on to each

processor when running in parallel.

• A distributed surface type exists

“distributedTriSurfaceMesh” which can

reduce the memory overhead for large

surfaces

• Utility surfaceRedistributePar is used to

initially decompose the surface

• Three distribution methods available

independent: distribution independent of

mesh to produce best memory balance

follow: distribution based on mesh

bounding box to reduce communication

frozen: distribution remains unchanged

A1: Supported Types

© Copyright 2016 ENGYS Limited. All rights reserved.

User defined shapes

• Basic shapes → box, cylinder and

sphere

box
{

type searchableBox;
min (-0.2 -0.2 -0.02);
max (0.44 0.2 0.32);

}

sphere
{

type searchableSphere;
centre (3 3 0);
radius 4;

}

cylinder
{

type searchableCylinder;
point1 (0 0 0);
point2 (1 0 0);
radius 0.1;

}

A1: Supported Types

© Copyright 2016 ENGYS Limited. All rights reserved.

plane
{

type searchablePlane;

planeType pointAndNormal;
pointAndNormalDict
{

basePoint (0 0 0);
normalVector (0 1 0);

}
}

plate
{

type searchablePlate;
origin (0 0 0);
span (0.5 0.5 0);

}

User defined shapes

• Basic shapes → plane and plate

A1: Supported Types

© Copyright 2016 ENGYS Limited. All rights reserved.

twoBoxes
{

type searchableSurfaceCollection;
mergeSubRegions true;

boxA
{

surface box;
scale (1.0 1.0 2.1);
transform
{

type cartesian;
origin (2 2 0);
e1 (1 0 0);
e3 (0 0 1);

}
}
boxB
{

surface box;
scale (1.0 1.0 2.1);
transform
{

type cartesian;
origin (3.5 3 0);
e1 (1 0 0);
e3 (0 0 1);

}
}

}

User defined shapes

• Complex shapes → Collection of

basic shapes scaled and transformed

A1: Refinement

© Copyright 2016 ENGYS Limited. All rights reserved.

The first meshing stage is called

“Refinement”. This is where the initial

block mesh is refined based on surface

and volumetric refinement settings in the

castellatedMeshControls sub-

dictionary

castellatedMeshControls
{

maxGlobalCells 2000000;
minRefinementCells 0;
nCellsBetweenLevels 1;

features();

refinementSurfaces
{

flange
{

level (2 3);
regions{“*.inlet|*.outlet”{level(3,4);}}

}
sphereA
{

level (3 3);
faceZone zoneA; cellZone zoneA; cellZoneInside

inside;
}

}

resolveFeatureAngle 30;

refinementRegions
{

sphereA
{

mode inside;
levels ((1E15 3));

}
}
locationInMesh (-9.23149e-05 -0.0025 -0.0025);
allowFreeStandingZoneFaces true;

}

A1: castellatedMesh

© Copyright 2016 ENGYS Limited. All rights reserved.

Mesh control keywords:

• Global mesh size controls

• Buffer layers

nCellsBetweenLevels 1

nCellsBetweenLevels 3

castellatedMeshControls
{

maxGlobalCells 2000000;
minRefinementCells 0;
nCellsBetweenLevels 1;

features();

refinementSurfaces
{

flange
{

level (2 3);
regions{“*.inlet|*.outlet”{level(3,4);}}

}
sphereA
{

level (3 3);
faceZone zoneA; cellZone zoneA; cellZoneInside

inside;
}

}

resolveFeatureAngle 30;

refinementRegions
{

sphereA
{

mode inside;
levels ((1E15 3));

}
}
locationInMesh (-9.23149e-05 -0.0025 -0.0025);
allowFreeStandingZoneFaces true;

}

A1: castellatedMesh

© Copyright 2016 ENGYS Limited. All rights reserved.

User-defined edge refinements

Example .eMesh file

features
(

{
file "flange.eMesh";
level 3;
//or levels ((0.1 3) (0.33 2)) //distance refinement, new in 2.2.x

}
);

FoamFile
{

version 2.0;
format ascii;
class featureEdgeMesh;
location "constant/triSurface";
object flange.eMesh;

}
// * //

3
(
(0.0065 0.0075 -0.02375)
(0.0065 0.0075 0.00225)
(-0.0065 0.0075 -0.02375)
)

2
(
(0 1)
(1 2)
)

castellatedMeshControls
{

maxGlobalCells 2000000;
minRefinementCells 0;
nCellsBetweenLevels 1;

features();

refinementSurfaces
{

flange
{

level (2 3);
regions{“*.inlet|*.outlet”{level(3,4);}}

}
sphereA
{

level (3 3);
faceZone zoneA; cellZone zoneA; cellZoneInside

inside;
}

}

resolveFeatureAngle 30;

refinementRegions
{

sphereA
{

mode inside;
levels ((1E15 3));

}
}
locationInMesh (-9.23149e-05 -0.0025 -0.0025);
allowFreeStandingZoneFaces true;

}

Surface based refinements:

• Global min. and max. refinements

• Refinement by patch (region)

A1: castellatedMesh

© Copyright 2016 ENGYS Limited. All rights reserved.

Level 0 Level 1 Level 1

Level 2

Surface Mesh Refinements

castellatedMeshControls
{

maxGlobalCells 2000000;
minRefinementCells 0;
nCellsBetweenLevels 1;

features();

refinementSurfaces
{

flange
{

level (2 3);
regions{“*.inlet|*.outlet”{level(3,4);}}

}
sphereA
{

level (3 3);
faceZone zoneA; cellZone zoneA; cellZoneInside

inside;
}

}

resolveFeatureAngle 30;

refinementRegions
{

sphereA
{

mode inside;
levels ((1E15 3));

}
}
locationInMesh (-9.23149e-05 -0.0025 -0.0025);
allowFreeStandingZoneFaces true;

}

Surface based refinements:

• POSIX regular expresssions

supported

• patchInfo keyword can be used to set

the boundary type on a per surface

basis

A1: castellatedMesh

© Copyright 2016 ENGYS Limited. All rights reserved.

refinementSurfaces
{

flange
{

level (2 3);
patchInfo
{

type wall;
}
regions
{

“*.inlet|*.outlet”
{

level(3,4);
}

}
}

}

castellatedMeshControls
{

maxGlobalCells 2000000;
minRefinementCells 0;
nCellsBetweenLevels 1;

features();

refinementSurfaces
{

flange
{

level (2 3);
regions{“*.inlet|*.outlet”{level(3,4);}}

}
sphereA
{

level (3 3);
faceZone zoneA; cellZone zoneA; cellZoneInside

inside;
}

}

resolveFeatureAngle 30;

refinementRegions
{

sphereA
{

mode inside;
levels ((1E15 3));

}
}
locationInMesh (-9.23149e-05 -0.0025 -0.0025);
allowFreeStandingZoneFaces true;

}

Definition of mesh zones:

• Min. and max. refinement levels

• Cell zone name

• Face zone name

• Area selection: inside, outside or

insidepoint

A1: castellatedMesh

© Copyright 2016 ENGYS Limited. All rights reserved.

Mesh Zones

castellatedMeshControls
{

maxGlobalCells 2000000;
minRefinementCells 0;
nCellsBetweenLevels 1;

features();

refinementSurfaces
{

flange
{

level (2 3);
regions{“*.inlet|*.outlet”{level(3,4);}}

}
sphereA
{

level (3 3);
faceZone zoneA; cellZone zoneA; cellZoneInside

inside;
}

}

resolveFeatureAngle 30;

refinementRegions
{

sphereA
{

mode inside;
levels ((1E15 3));

}
}
locationInMesh (-9.23149e-05 -0.0025 -0.0025);
allowFreeStandingZoneFaces true;

}

A1: castellatedMesh

© Copyright 2016 ENGYS Limited. All rights reserved.

Additional feature refinements:

• Local curvature

• Feature angle refinement

Level 1

Level 2

Level 1 Level 2

Level 3 → Local

curvature

refinement

castellatedMeshControls
{

maxGlobalCells 2000000;
minRefinementCells 0;
nCellsBetweenLevels 1;

features();

refinementSurfaces
{

flange
{

level (2 3);
regions{“*.inlet|*.outlet”{level(3,4);}}

}
sphereA
{

level (3 3);
faceZone zoneA; cellZone zoneA; cellZoneInside

inside;
}

}

resolveFeatureAngle 30;

refinementRegions
{

sphereA
{

mode inside;
levels ((1E15 3));

}
}
locationInMesh (-9.23149e-05 -0.0025 -0.0025);
allowFreeStandingZoneFaces true;

}

A1: castellatedMesh

© Copyright 2016 ENGYS Limited. All rights reserved.

Volume refinements

• inside (outside)

• distance

mode inside;

levels ((1E15 3));

castellatedMeshControls
{

maxGlobalCells 2000000;
minRefinementCells 0;
nCellsBetweenLevels 1;

features();

refinementSurfaces
{

flange
{

level (2 3);
regions{“*.inlet|*.outlet”{level(3,4);}}

}
sphereA
{

level (3 3);
faceZone zoneA; cellZone zoneA; cellZoneInside

inside;
}

}

resolveFeatureAngle 30;

refinementRegions
{

sphereA
{

mode inside;
levels ((1E15 3));

}
}
locationInMesh (-9.23149e-05 -0.0025 -0.0025);
allowFreeStandingZoneFaces true;

}

A1: castellatedMesh

© Copyright 2016 ENGYS Limited. All rights reserved.

Cartesian point (x, y, z) to retain

required volume mesh

Level 1

Level 2

Level 1

Level 2

Keep Point in cell

castellatedMeshControls
{

…
refinementSurfaces
{

flange
{

level (2 3);

faceZone flange;

faceType boundary;

cellZone flange;

cellZoneInside inside;

}
}

A1: castellatedMesh

© Copyright 2016 ENGYS Limited. All rights reserved.

New functionality in 2.2.x

Used to define either

• “baffle”

creates a pair of faces which

match one-to-one.

• “boundary”

Creates a pair of faces that do not

match one-to-one. Less constraint

on meshing to create more high-

quality meshes.

• “internal”

keeps faces of faceZone as

internal faces.

A1: Surface Snapping

© Copyright 2016 ENGYS Limited. All rights reserved.

The second meshing stage is called

“Snapping” where patch faces are

projected down onto the surface

geometry. This stage is controlled by

settings in the snapControls sub-

dictionary

snapControls
{

nSmoothPatch 3;

tolerance 1.0;

nSolverIter 300;

nRelaxIter 5;

nFeatureSnapIter 10;

implicitFeatureSnap false;

explicitFeatureSnap true;

multiRegionFeatureSnap false;
}

A1: snapControls

© Copyright 2016 ENGYS Limited. All rights reserved.

Number of pre smoothing iterations of

patch points before projection to the

surface is performed

snapControls
{

nSmoothPatch 3;

tolerance 1.0;

nSolverIter 300;

nRelaxIter 5;

nFeatureSnapIter 10;

implicitFeatureSnap false;

explicitFeatureSnap true;

multiRegionFeatureSnap false;
}

A1: snapControls

© Copyright 2016 ENGYS Limited. All rights reserved.

Scaling of the maximum edge length

for attraction to the surface

snapControls
{

nSmoothPatch 3;

tolerance 1.0;

nSolverIter 300;

nRelaxIter 5;

nFeatureSnapIter 10;

implicitFeatureSnap false;

explicitFeatureSnap true;

multiRegionFeatureSnap false;
}

A1: snapControls

© Copyright 2016 ENGYS Limited. All rights reserved.

Number of interior smoothing iterations

applied to snapped displacement field

snapControls
{

nSmoothPatch 3;

tolerance 1.0;

nSolverIter 300;

nRelaxIter 5;

nFeatureSnapIter 10;

implicitFeatureSnap false;

explicitFeatureSnap true;

multiRegionFeatureSnap false;
}

A1: snapControls

© Copyright 2016 ENGYS Limited. All rights reserved.

Controls number of scaling back

iterations for error reduction stage

snapControls
{

nSmoothPatch 3;

tolerance 1.0;

nSolverIter 300;

nRelaxIter 5;

nFeatureSnapIter 10;

implicitFeatureSnap false;

explicitFeatureSnap true;

multiRegionFeatureSnap false;
}

A1: snapControls

© Copyright 2016 ENGYS Limited. All rights reserved.

Number of feature snapping iterations

to perform. Features edges to attract

to are defined by an .eMesh file setup

in castellatedMeshControls which

can also be used for feature

refinement.

To extract an eMesh file containing the

feature edge information about a

particular surface the utility

surfaceFeatureExtract can be used

e.g.

surfaceFeatureExtract -includedAngle

150 <surface> <output set>

snapControls
{

nSmoothPatch 3;

tolerance 1.0;

nSolverIter 300;

nRelaxIter 5;

nFeatureSnapIter 10;

implicitFeatureSnap false;

explicitFeatureSnap true;

multiRegionFeatureSnap false;
}

A1: snapControls

© Copyright 2016 ENGYS Limited. All rights reserved.

New functionality in 2.2.x

Uses resolveFeatureAngle to detect

changes in the features to find “creases”.

Snapping is then performed on a

“representation” of the feature from the

local topology. (default = false)

snapControls
{

nSmoothPatch 3;

tolerance 1.0;

nSolverIter 300;

nRelaxIter 5;

nFeatureSnapIter 10;

implicitFeatureSnap false;

explicitFeatureSnap true;

multiRegionFeatureSnap false;
}

A1: snapControls

© Copyright 2016 ENGYS Limited. All rights reserved.

Indicates that an eMesh file is to be

used to approximate features within

the mesh i.e. uses features defined in

castellatedMeshControls

(default = true;

snapControls
{

nSmoothPatch 3;

tolerance 1.0;

nSolverIter 300;

nRelaxIter 5;

nFeatureSnapIter 10;

implicitFeatureSnap false;

explicitFeatureSnap true;

multiRegionFeatureSnap false;
}

A1: snapControls

© Copyright 2016 ENGYS Limited. All rights reserved.

In conjunction with explicitFeatureSnap,

this is used to detect the features

between multiple surfaces.

A1: Layers

© Copyright 2016 ENGYS Limited. All rights reserved.

The final meshing stage is called “Layer

addition” where a layer of cells is added to

a specified set of boundary patches. This

stage is controlled by the settings in the

addLayersControls sub-dictionary

addLayersControls
{

layers
{

"flange_.*"{nSurfaceLayers 1;}
}

finalLayerThickness 0.4;
expansionRatio 1.15;

minThickness 0.2;

relativeSizes true;

// Advanced settings
featureAngle 30;
slipFeatureAngle 30;
nSmoothSurfaceNormals 1;
nSmoothNormals 3;
nSmoothThickness 10;

minMedianAxisAngle 80;
maxThicknessToMedialRatio 0.3;

maxFaceThicknessRatio 0.5;

nLayerIter 50;

meshQualityControls::relaxed.
nRelaxedIter 20;

nRelaxIter 5;
}

A1: addLayersControls

© Copyright 2016 ENGYS Limited. All rights reserved.

Specification of the number of layers

to be grown on each patch. Supports

regular expression syntax

addLayersControls
{

layers
{

"flange_.*"{nSurfaceLayers 1;}
}

finalLayerThickness 0.4;
expansionRatio 1.15;

minThickness 0.2;

relativeSizes true;

// Advanced settings
featureAngle 30;
slipFeatureAngle 30;
nSmoothSurfaceNormals 1;
nSmoothNormals 3;
nSmoothThickness 10;

minMedianAxisAngle 80;
maxThicknessToMedialRatio 0.3;

maxFaceThicknessRatio 0.5;

nLayerIter 50;

meshQualityControls::relaxed.
nRelaxedIter 20;

nRelaxIter 5;
}

A1: addLayersControls

© Copyright 2016 ENGYS Limited. All rights reserved.

expansionRatio is the ratio of heights
from one layer to the next consecutive
layer in the direction away from the
surface, i.e.

finalLayerThickness is the ratio of the
final layer height relative to the
adjacent surface mesh size, i.e. S

5

4

5

3

4

2

3

1

2




















addLayersControls
{

layers
{

"flange_.*"{nSurfaceLayers 1;}
}

finalLayerThickness 0.4;
expansionRatio 1.15;

minThickness 0.2;

relativeSizes true;

// Advanced settings
featureAngle 30;
slipFeatureAngle 30;
nSmoothSurfaceNormals 1;
nSmoothNormals 3;
nSmoothThickness 10;

minMedianAxisAngle 80;
maxThicknessToMedialRatio 0.3;

maxFaceThicknessRatio 0.5;

nLayerIter 50;

meshQualityControls::relaxed.
nRelaxedIter 20;

nRelaxIter 5;
}

A1: addLayersControls

© Copyright 2016 ENGYS Limited. All rights reserved.

Specification of the number of layers,

the final layer thickness and

expansion ratio uniquely defines the

layer profile and is used to calculate

the first cell height Δ1 and total layer

thickness ΔL

addLayersControls
{

layers
{

"flange_.*"{nSurfaceLayers 1;}
}

finalLayerThickness 0.4;
expansionRatio 1.15;

minThickness 0.2;

relativeSizes true;

// Advanced settings
featureAngle 30;
slipFeatureAngle 30;
nSmoothSurfaceNormals 1;
nSmoothNormals 3;
nSmoothThickness 10;

minMedianAxisAngle 80;
maxThicknessToMedialRatio 0.3;

maxFaceThicknessRatio 0.5;

nLayerIter 50;

meshQualityControls::relaxed.
nRelaxedIter 20;

nRelaxIter 5;
}

A1: addLayersControls

© Copyright 2016 ENGYS Limited. All rights reserved.

Specification of a minimum layer

thickness below which height layers

will automatically be collapsed.

The final layer thickness and minimum

thickness can be defined as either

being relative (true) to the background

spacing ΔS or defined as an absolute

(false) length.

addLayersControls
{

layers
{

"flange_.*"{nSurfaceLayers 1;}
}

finalLayerThickness 0.4;
expansionRatio 1.15;

minThickness 0.2;

relativeSizes true;

// Advanced settings
featureAngle 30;
slipFeatureAngle 30;
nSmoothSurfaceNormals 1;
nSmoothNormals 3;
nSmoothThickness 10;

minMedianAxisAngle 80;
maxThicknessToMedialRatio 0.3;

maxFaceThicknessRatio 0.5;

nLayerIter 50;

meshQualityControls::relaxed.
nRelaxedIter 20;

nRelaxIter 5;
}

A1: addLayersControls

© Copyright 2016 ENGYS Limited. All rights reserved.

Specification of feature angle above

which layers are collapsed

automatically

featureAngle 45;

featureAngle 180;

addLayersControls
{

layers
{

"flange_.*"{nSurfaceLayers 1;}
}

finalLayerThickness 0.4;
expansionRatio 1.15;

minThickness 0.2;

relativeSizes true;

// Advanced settings
featureAngle 30;
slipFeatureAngle 30;
nSmoothSurfaceNormals 1;
nSmoothNormals 3;
nSmoothThickness 10;

minMedianAxisAngle 80;
maxThicknessToMedialRatio 0.3;

maxFaceThicknessRatio 0.5;

nLayerIter 50;

meshQualityControls::relaxed.
nRelaxedIter 20;

nRelaxIter 5;
}

A1: addLayersControls

© Copyright 2016 ENGYS Limited. All rights reserved.

Specifies what feature angle to allow

layers to slip “perpendicularly” up a

patch

i.e. “at non-patch sides, allow mesh to

slip if extrusion direction makes an

angle larger than slipFeatureAngle”

addLayersControls
{

layers
{

"flange_.*"{nSurfaceLayers 1;}
}

finalLayerThickness 0.4;
expansionRatio 1.15;

minThickness 0.2;

relativeSizes true;

// Advanced settings
featureAngle 30;
slipFeatureAngle 30;
nSmoothSurfaceNormals 1;
nSmoothNormals 3;
nSmoothThickness 10;

minMedianAxisAngle 80;
maxThicknessToMedialRatio 0.3;

maxFaceThicknessRatio 0.5;

nLayerIter 50;

meshQualityControls::relaxed.
nRelaxedIter 20;

nRelaxIter 5;
}

A1: addLayersControls

© Copyright 2016 ENGYS Limited. All rights reserved.

Smoothing can be performed on the

surface point normals

(nSmoothSurfaceNormals), layer

thickness (nSmoothThickness) and

the interior displacement field

(nSmoothNormals) e.g.

Smoothed surface normals

addLayersControls
{

layers
{

"flange_.*"{nSurfaceLayers 1;}
}

finalLayerThickness 0.4;
expansionRatio 1.15;

minThickness 0.2;

relativeSizes true;

// Advanced settings
featureAngle 30;
slipFeatureAngle 30;
nSmoothSurfaceNormals 1;
nSmoothNormals 3;
nSmoothThickness 10;

minMedianAxisAngle 80;
maxThicknessToMedialRatio 0.3;

maxFaceThicknessRatio 0.5;

nLayerIter 50;

meshQualityControls::relaxed.
nRelaxedIter 20;

nRelaxIter 5;
}

A1: addLayersControls

© Copyright 2016 ENGYS Limited. All rights reserved.

This angle is used to define a medial

axis which is used when moving the

mesh away from the surface

Medial Axis

H

M

nSurfaceLayers >0

nSurfaceLayers =0

addLayersControls
{

layers
{

"flange_.*"{nSurfaceLayers 1;}
}

finalLayerThickness 0.4;
expansionRatio 1.15;

minThickness 0.2;

relativeSizes true;

// Advanced settings
featureAngle 30;
slipFeatureAngle 30;
nSmoothSurfaceNormals 1;
nSmoothNormals 3;
nSmoothThickness 10;

minMedianAxisAngle 80;
maxThicknessToMedialRatio 0.3;

maxFaceThicknessRatio 0.5;

nLayerIter 50;

meshQualityControls::relaxed.
nRelaxedIter 20;

nRelaxIter 5;
}

A1: addLayersControls

© Copyright 2016 ENGYS Limited. All rights reserved.

Used to reduce the layer thickness

where the ratio of layer thickness to

distance to medial axis (ΔH/ΔM)

becomes too large

Medial Axis

H

M

nSurfaceLayers >0

nSurfaceLayers =0

addLayersControls
{

layers
{

"flange_.*"{nSurfaceLayers 1;}
}

finalLayerThickness 0.4;
expansionRatio 1.15;

minThickness 0.2;

relativeSizes true;

// Advanced settings
featureAngle 30;
slipFeatureAngle 30;
nSmoothSurfaceNormals 1;
nSmoothNormals 3;
nSmoothThickness 10;

minMedianAxisAngle 80;
maxThicknessToMedialRatio 0.3;

maxFaceThicknessRatio 0.5;

nLayerIter 50;

meshQualityControls::relaxed.
nRelaxedIter 20;

nRelaxIter 5;
}

A1: addLayersControls

© Copyright 2016 ENGYS Limited. All rights reserved.

Used to identify warped faces and

terminate layers on these faces

If the layer iteration has not converged

after a certain number of iterations exit

the layer addition loop early with the

currently generated layer

If layer iteration has not converged

after a specified number of iterations

then use a set of relaxed mesh quality

metrics, set in meshQualityControls,

to achieve convergence

Controls number of scaling back iterations

during error reduction stage

