

1

Some results using a new compressible flow solver for
OpenFoam

L. Gasparini
Fondmetal Technologies, Italy

A new density-based solver for non-viscous compressible flow has been written for
OpenFoam, implementing a so-called Godunov-like central (or central-upwind) scheme.
A few test cases have been run relative to 1D and 2D compressible flows with shocks and
the results are presented and compared against some of the compressible flow solvers
distributed with OpenFoam 1.3. The performance of the new solver is interesting.

I. Introduction
new density-based solver for non viscous compressible flow is presented, which implements a so-called
Godunov-like central (or central-upwind) scheme formulation. This family of schemes, extensively

documented in a large number of papers which have appeared in the last few years,1 shares some of the high-
resolution properties of classical (approximate) Riemann-solver based upwind schemes, while being much
simpler to implement. Specifically, I have applied the semidiscrete second-order formulation of Kurganov,
Noelle and Petrova.2

At its present development stage the solver, called centralFoam, is an unsteady explicit solver for the
compressible flow of a perfect gas. Space discretisation is second-order accurate and based on the reconstruction
of the primitive variables (p, U, T); one among the usual variety of limited schemes available in OpenFoam 1.3
is selected at run time to obtain a non-oscillatory reconstruction. Time integration currently employs the first-
order (forward) Euler scheme, similarly to the other solvers considered in the present work.

The implementation of the solver has been done at the application level, and no new library has been
developed. Thus, two dummy surfaceScalarFields representing positive and negative fluxes (i.e. respectively,
flux from the owner to the neighbor cell and from the neighbor to the owner cell) are used to “fool” the
interpolation function and reconstruct the primitive variables on both sides of each cell face, as required by any
Godunov-like scheme. A cleaner and probably faster implementation is possible writing an appropriate
reconstruction class, but this is currently beyond my level of understanding of C++ and of the OpenFoam
software package.

In the following sections some results are shown obtained using centralFoam on 1D and 2D test cases; they
are compared against the results obtained using three of the compressible flow solvers available within the
OpenFoam 1.3 distribution, namely sonicFoam, rhoSonicFoam and rhopSonicFoam.

II. Solution parameters and spatial schemes
Since the explicit scheme adopted in

centralFoam has a Courant number limitation of
Co < 0.5, all computations have been done
selecting for each case a time step which gives a
Co of the order of 0.4; the same time step has
been used for all the other solvers as well,
although they could in principle allow for a larger
time step (just talking about stability, not about
the accuracy of the solution).

By the way, note that here the Courant
number is computed, as typical for compressible
flows, using the maximum wave propagation
velocity, max(mag(uN + c), mag(uN - c)), uN being
the flow velocity component normal to the cell
face and c the local sound speed. On the contrary,
sonicFoam includes compressibleCourantNo.H from src\finiteVolume\cfdTools\compressible;
strangely, this code only considers the convective velocity uN. Similarly to sonicFoam do rhoSonicFoam and
rhopSonicFoam as well, although in these the computation of the Courant number is coded directly into the
main solver.

A

Solver Solution scheme parameters
centralFoam None

SonicFoam

PISO
{
 nCorrectors 2;
 nNonOrthogonalCorrectors 0;
}

rhoSonicFoam None

rhopSonicFoam

PISO
{
 nOuterCorrectors 3;
 nCorrectors 1;
 HbyAblend 0.0;
}

Table 1. Solution parameters.

2

For sonicFoam, rhoSonicFoam and rhopSonicFoam the solution parameters specified in the tutorial’s
shockTube case (used also in the tutorial’s forwardStep case, for the first two solvers) have been also applied to
all the other test cases run; note however, that rhoSonicFoam actually does not make use of any PISO
parameter, although they are still specified in the fvSolution dictionary. The relevant parameters are summarized
in Table 1, omitting the specification of the linear solvers used for the various equations. Note that the new
solver also does not have any user-adjustable solution parameter (except for the indication of the linear solvers).

Furthermore, for all cases and solvers the Gamma 1.0 limited interpolation scheme has been used (actually,
for the original OpenFoam solvers GammaV 1.0 has been used whenever available). No attempt has been made
to optimize either the limiter (i.e. the space discretisation scheme) or the time step for each single case or solver.

III. 1D shock tube
This is the 1D shockTube test case which is part of the set of tutorial cases provided with OpenFoam. The

only modification is that, in order to emphasize the differences in the shock-capturing capability of the solvers, a
coarser grid of 500 cells in x-direction is used, instead of the original 1000 cells. Note that similar cases are
typically shown in the literature on meshes with 100 or 200 cells, 400 cells already being considered a rather
fine mesh for such a simple problem.

Figure 1 shows the results for the pressure-based sonicFoam solver. It is clear that the predicted shock
position (i.e. the shock speed) is wrong (too slow, this will also appear in the unsteady 2D cases to be presented
later) and that the shock profile is distributed over a large number of cells, due to excessive dissipation. Also,
post-shock temperature is inexact. Thus, at least with the set of solution parameters applied here, sonicFoam
cannot be considered an accurate solver for unsteady flows with shocks.

Figure 2 shows the results for the density-based rhoSonicFoam solver. It gives reasonable results, although
the contact discontinuity and the shock are not very sharp, but oscillations develop near the shock and at the end
of the expansion.

Figure 3 shows the results for the pressure-and-density-based rhopSonicFoam solver. It gives the cleanest
results among the three original OpenFoam solvers but the shock and the contact discontinuity are still not very
sharp.

From Fig. 4 it appears that the new solver gives much sharper profiles for both the contact discontinuity and
the shock than any of the original solver, with only very
little oscillations near the contact. It also has better
accuracy at the two ends of the expansion area.

Table 2 summarizes the CPU time required by the
four solvers on my 3GHz PC under Cygwin. Remind
that the time required by the original solvers to complete
the simulation could be reduced running at higher Co
number, although the accuracy might suffer.

IV. 2D Riemann problems
A few 2D unsteady test cases have been run among the set presented by Liska and Wendroff.3 All cases used

a 400x400 cells uniform grid as was done in the cited paper. Again, the time step is selected to give a maximum
Co not far from 0.4.

A. Case 3
Figure 5 presents the results for this case obtained using all four solvers. As for the other 2D Riemann

problem cases the pictures show color levels of pressure (the same scale is used for all solvers) and iso-density
contours (using the min, max and step values specified in the cited paper). It is evident that while the solution
obtained with centralFoam compares well with those shown in the literature all other solvers have severe
problems (at least with the current set of solution parameters): sonicFoam clearly underpredicts shock speeds,
giving a completely wrong answer, while the solution of both rhoSonicFoam and rhopSonicFoam is corrupted
by oscillations.

B. Case 4
The situation is similar for this case too, shown in Fig. 6: centralFoam gives good, sharp but non-oscillatory

results; sonicFoam still underpredicts shock speeds and does not show the proper flow structures;
rhoSonicFoam and rhopSonicFoam are again corrupted by oscillations.

Solver CPU time (s)
centralFoam 10.6
sonicFoam 17.2

rhoSonicFoam 6.5
rhopSonicFoam 26.3

Table 2. CPU time for the 1D shockTube case.

3

C. Case 6
While the previous cases involved shocks, case 6, shown in Fig. 7, only produces contact discontinuities.

Thus, all solvers deliver not too bad (sonicFoam and rhopSonicFoam, both showing some oscillations) or good
(rhoSonicFoam and centralFoam) results.

D. CPU time
Table 3 summarizes the CPU time required by the four solvers in the three cases. It appears that the new

solver is not only accurate but also significantly
faster than any other (per iteration). As already
mentioned, the original solvers could be run at
higher Co number (at least ~1, instead of ~0.5)
thus requiring less time steps to complete the
simulation but the effect on solution accuracy
has not been checked.

It is worth mentioning that because of the
very large time required by rhopSonicFoam I also tried to reduce the number of nOuterCorrectors from 3 to
1, thus making it three times faster. For the 1D shockTube problem this introduces some oscillations at the
shock whereas for all the 2D Riemann problem cases the oscillations, already present, become just worse.

V. Oblique shock case
In this well-known steady test case an oblique shock with a 29° incident angle is obtained imposing on the

upper boundary of the rectangular domain the exact post shock state (specified with an inlet condition on the top
side) in a freestream flow at Mach 2.9 (specified with a supersonicInlet on the left side). The oblique shock then
reflects on the lower symmetry plane. At the outlet an extrapolatedOutlet boundary condition is applied. The
simulation is run up to Time = 10, when the solution has converged to the steady state.

From Fig. 8 the usual behavior appears, with sonicFoam giving a poor, exact but too dissipative, solution,
rhopSonicFoam suffering from oscillations and centralFoam giving sharp shocks without oscillations. Note that
rhoSonicFoam completely failed to deliver the correct answer in this case, probably because of a problem
related to the inlet boundary condition along the top side,
as evidenced by the non uniform velocity vectors in the
central post shock area.

The time required by the various solvers is reported in
Table 4. Again, larger time steps, hence a faster
convergence, might be possible with the original solvers;
however this has not been investigated since they already
showed unacceptable results.

VI. Woodward-Colella supersonic forward step
This is also a well-known test case used among others by Woodward and Colella.4 A step suddenly appears

on the bottom wall of a channel in a Mach 3 flow. A bow shock develops which is then reflected a few times by
the top and bottom wall. It is essentially an unsteady test case and the solution at Time = 4 is usually considered
in the literature. Eventually (Time > 20), the flow reaches a steady state condition with a single shock across the
channel height in front of the step.

The evolution of the flow at a few time instant, according to the computation done with centralFoam, is
shown by the sequence of pictures in Fig. 9. This computation is done on the same mesh and applying the same
boundary conditions used in the tutorial’s forwardStep case (available for both sonicFoam and rhoSonicFoam).
However, the tutorial’s case starts from zero internal velocity, which results in a different transient from what
specified in the literature (although it obviously converge to the same steady state).

It is possible to run the case from the proper initial condition of Mach 3 flow using sonicFoam and
rhopSonicFoam as well, but with rhoSonicFoam the solution blows up after a few time steps. The results from
the first two solvers at Time = 4 are shown in Fig. 10 along with the results computed by centralFoam on the
standard grid and on a fine grid with twice the cells in both directions.

Once more the result from sonicFoam is completely wrong: the transient is not right and actually even the
steady state solution to which the flow converges is wrong; in fact picture 10-a (at Time = 4) is very similar to
the one (at Time = 10) presented in section 3.3 of OpenFoam Programmer’s Guide, where the forwardStep
tutorial is illustrated (the influence of viscosity is almost negligible); this is because according to sonicFoam the
flow will reach its (wrong) steady state shortly after Time = 4. Considering the bad result it would probably be
better to remove this case from the Guide, as it demonstrates an incorrect computation!

CPU time (s) Solver Case 3 Case 4 Case 6
Average

time ratio
centralFoam 1980 1659 1947 1.0
sonicFoam 4622 4003 4640 2.4

rhoSonicFoam 2850 2401 2702 1.4
rhopSonicFoam 10182 8409 9943 5.1

Table 3. CPU time for the 2D Riemann problem cases.

Solver CPU time (s) Time ratio
centralFoam 97.7 1.0
sonicFoam 182.3 1.9

rhoSonicFoam 100.5 1.0
rhopSonicFoam 420.8 4.3

Table 4. CPU time for the oblique shock case.

4

On the contrary, rhopSonicFoam gives as usual the right answer but corrupted by oscillations, while
centralFoam provides an accurate solution comparable to those given in the literature, although the one on the
fine grid is a little noisy. For both solvers the solution along the step wall is actually distorted by a significant
numerical boundary layer, so that the reflecting oblique shock is joined to the lower wall by a short normal
shock. This behavior is induced by the poor boundary condition applied to the pressure at the wall; in fact the
current treatment of slip and non-slip wall in OpenFoam is to apply a zero-order extrapolation of the pressure
(zero gradient): this is good enough for the highly
clustered grids used for high-Re viscous flow but is rather
poor for grids typical of inviscid flow; it is expected that a
first-order extrapolation of the pressure, if available, would
improve the results.

Finally, Table 5 shows the comparison of the time
required by the various solver to run the simulation up to
Time = 4.

VII. Conclusion
A new unsteady, non-viscous, compressible, density-based flow solver implementing one version of the so-

called central schemes have been written for OpenFoam 1.3. A few test cases, 1D and 2D, unsteady and steady,
show that the solver, named centralFoam, is typically more accurate (sharper shocks, less oscillations) and
faster than any of the three basic compressible flow solvers distributed with OpenFoam 1.3; these, at least in the
presented cases, all suffer from either excessive dissipation or significant oscillations in presence of shocks.
Actually, no one of the original solvers performed acceptably on the full set of test cases, whereas centralFoam
consistently delivered faster, correct and high-resolution results.

It is also shown that sonicFoam is not an accurate solver in presence of shocks, at least when the set of
solution parameters specified in the tutorial’s shockTube or forwardStep cases are applied, and that it can lead to
completely wrong answers.

References
1 http://www.cscamm.umd.edu/centpack/publications/
2 Kurganov, A., Noelle, S. and Petrova, G., “Semidiscrete Central-Upwind Schemes for Hyperbolic Conservation Laws

and Hamilton-Jacobi Equations”, SIAM J. Sci. Comput., Vol. 23, No. 3, 2001, pp.707-740.
3 Liska, R. and Wendroff, B., “Comparison of Several Difference Schemes on 1D and 2D Test Problems for the Euler

Equations”, SIAM J. Sci. Comput., Vol. 25, No. 3, 2002, pp.995-1017.
4 Woodward, P. and Colella, P., “The Numerical Simulation of Two-Dimensional Fluid Flow with Strong Shocks”, J.

Comput. Phys., Vol. 54, 1984, pp.115-173.

Solver CPU time (s) Time ratio
centralFoam 179 1.0
sonicFoam 459 2.6

rhoSonicFoam - -
rhopSonicFoam 596 3.3

Table 5. CPU time for the forward step case.

5

Figure 2. Shock tube, rhoSonicFoam results. Figure 1. Shock tube, sonicFoam results.

6

Figure 3. Shock tube, rhopSonicFoam results. Figure 4. Shock tube, centralFoam results.

7

 a) sonicFoam b) rhoSonicFoam

 c) rhopSonicFoam d) centralFoam

Figure 5. 2D Riemann problem, case 3. Pressure is displayed by color (from 0.0 to 1.6), density by contours and
velocity by arrows.

8

 a) sonicFoam b) rhoSonicFoam

 c) rhopSonicFoam d) centralFoam

Figure 6. 2D Riemann problem, case 4. Pressure is displayed by color (from 0.4 to 2.8), density by contours and
velocity by arrows.

9

 a) sonicFoam b) rhoSonicFoam

 c) rhopSonicFoam d) centralFoam

Figure 7. 2D Riemann problem, case 6. Pressure is displayed by color (from 0.15 to 1.0), density by contours and
velocity by arrows.

10

a) sonicFoam

b) rhoSonicFoam

c) rhopSonicFoam

d) centralFoam

Figure 8. Steady, oblique shock case. Pressure is displayed by color and contours, velocity by vectors.

11

a) T = 0.5

b) T = 1.0

c) T = 2.0

d) T = 25.0

Figure 9. Forward step case. Computation with centralFoam on standard grid. Velocity magnitude is displayed
by color, density by contours.

12

a) sonicFoam

b) rhopSonicFoam

c) centralFoam, standard mesh

d) centralFoam, fine mesh

Figure 9. Forward step case. T = 4. Velocity magnitude is displayed by color, density by contours.

